BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 7365784)

  • 1. The complete rate equation, including the explicit dependence on Na+ ions, for the influx of alpha-aminoisobutyric acid into mouse brain slices.
    Cohen SR
    J Membr Biol; 1980; 52(2):95-105. PubMed ID: 7365784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of the rate equations, kinetic parameters, and activation energies for the initial uptake of L-lysine, L-valine, gamma-aminobutyric acid, and alpha-aminoisobutyric acid by mouse brain slices.
    Cohen SR
    J Membr Biol; 1975 Jun; 22(1):53-72. PubMed ID: 1127685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The rate equation and activation energies for the uptake of -aminoisobutyric acid by mouse brain slices.
    Cohen SR
    J Physiol; 1973 Jan; 228(1):105-13. PubMed ID: 4686019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rate equations and kinetics of uptake of alpha-aminoisobutyric acid and gamma-aminobutyric acid by mouse cerebrum slices incubated in media containing L(+)-lactate or a mixture of succinate, L-malate, and pyruvate as the energy source.
    Cohen SR
    J Neurochem; 1985 Feb; 44(2):455-64. PubMed ID: 3965619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neutral amino acid transport in astrocytes: characterization of Na+-dependent and Na+-independent components of alpha-aminoisobutyric acid uptake.
    Brookes N
    J Neurochem; 1988 Dec; 51(6):1913-8. PubMed ID: 3053994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "Exchange diffusion": rate equations for the influx of alpha-aminoisobutyric acid into mouse cerebrum slices containing this amino acid.
    Cohen SR
    J Bioenerg Biomembr; 1985 Oct; 17(5):305-26. PubMed ID: 4086488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. alpha-aminoisobutyrate transport into cells from R3230AC mammary adenocarcinoma. Evidence for sodium ion-dependent and -independent carrier-mediated entry and effects of diabetes.
    Hissin PJ; Hilf R
    Biochem J; 1978 Oct; 176(1):205-15. PubMed ID: 728108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of and rate equations for the uptake of alpha-amino-isobutyric aicd and gamma-aminobutyric acid by mouse brain slices incubated in a glucose-free medium containing pyruvate as the energy source.
    Cohen SR
    Brain Res; 1981 Jan; 205(1):157-68. PubMed ID: 6162511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetics of sodium-dependent alpha-aminoisobutyric acid transport in the moderate halophile Vibrio costicola.
    Hamaide F; Sprott GD; Kushner DJ
    Biochim Biophys Acta; 1984 Jul; 766(1):77-87. PubMed ID: 6743651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influx of gamma-aminobutyric acid and alpha-aminoisobutyric acid into mouse cerebrum slices incubated in a pyruvate medium with or without added glucose or glucose analogues compared with influx from a glucose medium.
    Cohen SR
    J Neurochem; 1980 Oct; 35(4):1008-12. PubMed ID: 7452287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarized amino acid transport by an epithelial cell line of renal origin (LLC-PK1). The basolateral systems.
    Rabito CA; Karish MV
    J Biol Chem; 1982 Jun; 257(12):6802-8. PubMed ID: 7085605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium-stimulated alpha-aminoisobutyric acid transport by membrane vesicles from simian virus-transformed mouse cells.
    Hamilton RT; Nilsen-Hamilton M
    Proc Natl Acad Sci U S A; 1976 Jun; 73(6):1907-11. PubMed ID: 180527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uptake pathways for amino acids in mouse intestine.
    Karasov W; Solberg D; Carter S; Hughes M; Phan D; Zollman F; Diamond J
    Am J Physiol; 1986 Oct; 251(4 Pt 1):G501-8. PubMed ID: 3094381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A chloride requirement for Na+-dependent amino-acid transport by brush border membrane vesicles isolated from the intestine of a Mediterranean teleost (Boops salpa).
    Bogé G; Rigal A
    Biochim Biophys Acta; 1981 Dec; 649(2):455-61. PubMed ID: 7317410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Further properties of sodium ion-stimulated alpha-[1-14C]aminoisobutyric acid uptake in alkalophilic Bacillus species.
    Kitada M; Horikoshi K
    J Biochem; 1980 May; 87(5):1279-84. PubMed ID: 7390991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discrimination of single transport systems. The Na plus-sensitive transport of neutral amino acids in the Ehrlich cell.
    Inui Y; Christensen HN
    J Gen Physiol; 1966 Sep; 50(1):203-24. PubMed ID: 5971029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino acid transport and rubidium-ion uptake in monolayer cultures of hepatocytes from neonatal rats.
    Bellemann P
    Biochem J; 1981 Sep; 198(3):475-83. PubMed ID: 6275850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Role of Na and Cl ions in retaining noradrenaline and serotonin in the meso-diencephalic region of the rat brain and in the action of gamma-aminobutyric acid on that process].
    Esaian NA; Armenian AR; Demirchian AA; Arakelian LN; Chiflikian MD
    Vopr Biokhim Mozga; 1975; 10():129-36. PubMed ID: 136798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of tryptophan influx into brain slices depleted of sodium and loaded with L-histidine.
    Korpi ER
    J Neurochem; 1983 Feb; 40(2):428-33. PubMed ID: 6822831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na+-gradient-dependent transport of L-proline and analysis of its carrier system in brush-border membrane vesicles of the guinea-pig ileum.
    Hayashi K; Yamamoto SI; Ohe K; Miyoshi A; Kawasaki T
    Biochim Biophys Acta; 1980 Oct; 601(3):654-63. PubMed ID: 7417443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.