These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 7366229)
1. On predicting extinction in simple population models. II. Numerical approximations. Smith RH; Mead R J Theor Biol; 1980 Feb; 82(3):525-35. PubMed ID: 7366229 [No Abstract] [Full Text] [Related]
2. Influence of stochastic perturbation on prey-predator systems. Rudnicki R; Pichór K Math Biosci; 2007 Mar; 206(1):108-19. PubMed ID: 16624335 [TBL] [Abstract][Full Text] [Related]
3. On some Markov models of certain interacting populations. Kannan D Bull Math Biol; 1976; 38(06):723-38. PubMed ID: 1033007 [No Abstract] [Full Text] [Related]
4. Mathematical models for the control of pests and infectious diseases: a survey. Wickwire K Theor Popul Biol; 1977 Apr; 11(2):182-238. PubMed ID: 325679 [No Abstract] [Full Text] [Related]
5. A semi-Markovian model for predator-prey interactions. Rao C; Kshirsagar AM Biometrics; 1978 Dec; 34(4):611-9. PubMed ID: 749946 [TBL] [Abstract][Full Text] [Related]
6. The stochastic modelling of kleptoparasitism using a Markov process. Broom M; Crowe ML; Fitzgerald MR; Rychtár J J Theor Biol; 2010 May; 264(2):266-72. PubMed ID: 20096290 [TBL] [Abstract][Full Text] [Related]
8. The theory of prey-predator oscillations. Bulmer MG Theor Popul Biol; 1976 Apr; 9(2):137-50. PubMed ID: 1273797 [No Abstract] [Full Text] [Related]
9. Multiple extinction routes in stochastic population models. Gottesman O; Meerson B Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021140. PubMed ID: 22463185 [TBL] [Abstract][Full Text] [Related]
10. Persistence and patchiness of predator-prey systems induced by discrete event population exchange mechanisms. Zeigler BP J Theor Biol; 1977 Aug; 67(4):687-713. PubMed ID: 904340 [No Abstract] [Full Text] [Related]
11. Stochastic models for the spread of HIV in a mobile heterosexual population. Sani A; Kroese DP; Pollett PK Math Biosci; 2007 Jul; 208(1):98-124. PubMed ID: 17174350 [TBL] [Abstract][Full Text] [Related]
14. On predicting extinction in simple population models. I. Stochastic linearization. Smith RH; Mead R J Theor Biol; 1979 Sep; 80(2):189-203. PubMed ID: 529799 [No Abstract] [Full Text] [Related]
15. A stochastic foraging model with predator training effects: I. Functional response, switching, and run lengths. McNair JN Theor Popul Biol; 1980 Apr; 17(2):414-66. PubMed ID: 7404444 [No Abstract] [Full Text] [Related]
16. On hybrid stochastic population models with impulsive perturbations. Hu G; Tian K J Biol Dyn; 2019 Dec; 13(1):385-406. PubMed ID: 31072266 [TBL] [Abstract][Full Text] [Related]
17. Optimal foraging in patches: a case for stochasticity. Oaten A Theor Popul Biol; 1977 Dec; 12(3):263-85. PubMed ID: 564087 [No Abstract] [Full Text] [Related]
18. Predation effects on mean time to extinction under demographic stochasticity. Palamara GM; Delius GW; Smith MJ; Petchey OL J Theor Biol; 2013 Oct; 334():61-70. PubMed ID: 23778159 [TBL] [Abstract][Full Text] [Related]
19. A predator--prey viewpoint of a single species population. Ross GG; Slade NA J Theor Biol; 1979 Apr; 77(4):513-22. PubMed ID: 491695 [No Abstract] [Full Text] [Related]
20. Approximations of Cumulants of the Stochastic Power Law Logistic Model. Nåsell I Bull Math Biol; 2020 Jan; 82(2):19. PubMed ID: 31970522 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]