These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 736904)
21. Separation and partial characterization of the enzymes of the toluene-4-monooxygenase catabolic pathway in Pseudomonas mendocina KR1. Whited GM; Gibson DT J Bacteriol; 1991 May; 173(9):3017-20. PubMed ID: 2019564 [TBL] [Abstract][Full Text] [Related]
22. Periplasmic location of p-cresol methylhydroxylase in Pseudomonas putida. Hopper DJ; Jones MR; Causer MJ FEBS Lett; 1985 Mar; 182(2):485-8. PubMed ID: 3920077 [TBL] [Abstract][Full Text] [Related]
23. The catabolism of 2,4-xylenol and p-cresol share the enzymes for the oxidation of para-methyl group in Pseudomonas putida NCIMB 9866. Chen YF; Chao H; Zhou NY Appl Microbiol Biotechnol; 2014 Feb; 98(3):1349-56. PubMed ID: 23736872 [TBL] [Abstract][Full Text] [Related]
24. Stereochemical aspects of the oxidation of 4-ethylphenol by the bacterial enzyme 4-ethylphenol methylenehydroxylase. Reeve CD; Carver MA; Hopper DJ Biochem J; 1990 Aug; 269(3):815-9. PubMed ID: 1697166 [TBL] [Abstract][Full Text] [Related]
25. Structures of the flavocytochrome p-cresol methylhydroxylase and its enzyme-substrate complex: gated substrate entry and proton relays support the proposed catalytic mechanism. Cunane LM; Chen ZW; Shamala N; Mathews FS; Cronin CN; McIntire WS J Mol Biol; 2000 Jan; 295(2):357-74. PubMed ID: 10623531 [TBL] [Abstract][Full Text] [Related]
26. Comparison of benzyl alcohol dehydrogenases and benzaldehyde dehydrogenases from the benzyl alcohol and mandelate pathways in Acinetobacter calcoaceticus and from the TOL-plasmid-encoded toluene pathway in Pseudomonas putida. N-terminal amino acid sequences, amino acid compositions and immunological cross-reactions. Chalmers RM; Keen JN; Fewson CA Biochem J; 1991 Jan; 273(Pt 1)(Pt 1):99-107. PubMed ID: 1989592 [TBL] [Abstract][Full Text] [Related]
27. Metabolism of benzyl alcohol via catechol ortho-pathway in methylnaphthalene-degrading Pseudomonas putida CSV86. Basu A; Dixit SS; Phale PS Appl Microbiol Biotechnol; 2003 Oct; 62(5-6):579-85. PubMed ID: 12687299 [TBL] [Abstract][Full Text] [Related]
28. The purification and characterization of 4-ethylphenol methylenehydroxylase, a flavocytochrome from Pseudomonas putida JD1. Reeve CD; Carver MA; Hopper DJ Biochem J; 1989 Oct; 263(2):431-7. PubMed ID: 2556994 [TBL] [Abstract][Full Text] [Related]
29. Regulation of growth of Acinetobacter calcoaceticus NCIB8250 on benzyl alcohol in batch culture. Beggs JD; Cook AM; Fewson CA J Gen Microbiol; 1976 Oct; 96(2):365-74. PubMed ID: 993779 [TBL] [Abstract][Full Text] [Related]
30. Resolution of the flavocytochrome p-cresol methylhydroxylase into subunits and reconstitution of the enzyme. Koerber SC; McIntire W; Bohmont C; Singer TP Biochemistry; 1985 Sep; 24(19):5276-80. PubMed ID: 4074695 [TBL] [Abstract][Full Text] [Related]
31. Genetic evidence that the degradation of para-cresol by Geobacter metallireducens is catalyzed by the periplasmic para-cresol methylhydroxylase. Chaurasia AK; Tremblay PL; Holmes DE; Zhang T FEMS Microbiol Lett; 2015 Oct; 362(20):. PubMed ID: 26316547 [TBL] [Abstract][Full Text] [Related]
32. Metabolism of resorcinylic compounds by bacteria: orcinol pathway in Pseudomonas putida. Chapman PJ; Ribbons DW J Bacteriol; 1976 Mar; 125(3):975-84. PubMed ID: 1254564 [TBL] [Abstract][Full Text] [Related]
33. A biochemical approach to some problems of environmental pollution. Dagley S Essays Biochem; 1975; 11():81-138. PubMed ID: 765127 [No Abstract] [Full Text] [Related]
34. Resolution of p-cresol methylhydroxylase into catalytically active subunits and reconstitution of the flavocytochrome. McIntire W; Singer TP FEBS Lett; 1982 Jul; 143(2):316-8. PubMed ID: 7117535 [No Abstract] [Full Text] [Related]
35. Benzyl alcohol penetration into micelles, dielectric constant of the binding site, partition coefficient and high-pressure squeeze-out. Kaneshina S; Kamaya H; Ueda I Biochim Biophys Acta; 1984 Oct; 777(1):75-83. PubMed ID: 6487618 [TBL] [Abstract][Full Text] [Related]
36. Biosynthesis of patulin; in vitro conversion of gentisyl alcohol into patulin by microsomal enzyme(s) and retention of one of the carbinol protons in this reaction. Iijima H; Ebizuka Y; Sankawa U Chem Pharm Bull (Tokyo); 1986 Aug; 34(8):3534-7. PubMed ID: 3024856 [No Abstract] [Full Text] [Related]
37. Formation and properties of flavoprotein-cytochrome hybrids by recombination of subunits from different species. Koerber SC; Hopper DJ; McIntire WS; Singer TP Biochem J; 1985 Oct; 231(2):383-7. PubMed ID: 4062904 [TBL] [Abstract][Full Text] [Related]
38. Grouping of phenol hydroxylase and catechol 2,3-dioxygenase genes among phenol- and p-cresol-degrading Pseudomonas species and biotypes. Merimaa M; Heinaru E; Liivak M; Vedler E; Heinaru A Arch Microbiol; 2006 Oct; 186(4):287-96. PubMed ID: 16906406 [TBL] [Abstract][Full Text] [Related]
39. Cresol isomers: comparison of toxic potency in rat liver slices. Thompson DC; Perera K; Fisher R; Brendel K Toxicol Appl Pharmacol; 1994 Mar; 125(1):51-8. PubMed ID: 8128495 [TBL] [Abstract][Full Text] [Related]
40. Binding of NADH to horse liver alcohol dehydrogenase: dependence on concentration of benzaldehyde and benzyl alcohol. Bignetti E Physiol Chem Phys Med NMR; 1984; 16(1):21-7. PubMed ID: 6385034 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]