BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 736971)

  • 1. Occurrence of aminoacyl-tRNA synthetase complexes in quiescent wheat germ.
    Quintard B; Mouricout M; Carias JR; Julien R
    Biochem Biophys Res Commun; 1978 Dec; 85(3):999-1006. PubMed ID: 736971
    [No Abstract]   [Full Text] [Related]  

  • 2. Multienzyme complexes of mammalian aminoacyl-tRNA synthetases.
    Yang DC; Garcia JV; Johnson YD; Wahab S
    Curr Top Cell Regul; 1985; 26():325-35. PubMed ID: 4075825
    [No Abstract]   [Full Text] [Related]  

  • 3. Interactions of aminoacyl-tRNA synthetases in high-molecular-weight multienzyme complexes from rat liver.
    Dang CV; Ferguson B; Burke DJ; Garcia V; Yang DC
    Biochim Biophys Acta; 1985 Jul; 829(3):319-26. PubMed ID: 4005265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear origin of specific yeast mitochondrial aminoacyl-tRNA synthetases.
    Schneller JM; Schneller C; Martin R; Stahl AJ
    Nucleic Acids Res; 1976 May; 3(5):1151-65. PubMed ID: 781620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leucyl-tRNA and arginyl-tRNA synthetases of wheat germ: inactivation and ribosome effects.
    Carias JR; Mouricout M; Quintard B; Thomes JC; Julien R
    Eur J Biochem; 1978 Jul; 87(3):583-90. PubMed ID: 679950
    [No Abstract]   [Full Text] [Related]  

  • 6. Hydrodynamic properties and structure of the rat liver 12 S arginyl- and lysyl-tRNA synthetase complex.
    Dang CV; Dang CV
    Biochem Biophys Res Commun; 1983 Dec; 117(2):464-9. PubMed ID: 6661237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charging of a yeast methionine tRNA with phenylalanine and its implication for the synthetase recognition problem.
    Feldmann H; Zachau HG
    Hoppe Seylers Z Physiol Chem; 1977 Jul; 358(7):891-6. PubMed ID: 330376
    [No Abstract]   [Full Text] [Related]  

  • 8. Seven mammalian aminoacyl-tRNA synthetases associated within the same complex are functionally independent.
    Mirande M; Cirakoğlu B; Waller JP
    Eur J Biochem; 1983 Mar; 131(1):163-70. PubMed ID: 6832139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Valyl-tRNA and leucyl-tRNA synthetases in wheat germ and seedlings.
    Rudzińska M; Goździcka-Józefiak A; Karwowska U; Augustyniak J
    Acta Biochim Pol; 1980; 27(3-4):309-19. PubMed ID: 7269974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth-dependent factors in the regulation of aminoacyl-tRNA synthetase activities of Tetrahymena pyriformis.
    Chua B; Elson C; Shrago E
    Biochim Biophys Acta; 1977 Oct; 478(4):474-85. PubMed ID: 410448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subcellular distribution and properties of rabbit liver aminoacyl-tRNA synthetases under myocardial ischemia.
    Ivanov LL; Martinkus Z; Kharchenko OV; Sara S; Lukoshevichius L; Prashkevichius A; El'skaya AV
    Mol Cell Biochem; 1993 Aug; 125(2):105-14. PubMed ID: 8283966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyamines and yellow lupin aminoacyl-tRNA synthetases. Spermine and spermidine help to maintain the active structures of aminoacyl-tRNA synthetases.
    Jakubowski H
    FEBS Lett; 1980 Jan; 109(1):63-6. PubMed ID: 7353634
    [No Abstract]   [Full Text] [Related]  

  • 13. Active aminoacyl-tRNA synthetases are present in nuclei as a high molecular weight multienzyme complex.
    Nathanson L; Deutscher MP
    J Biol Chem; 2000 Oct; 275(41):31559-62. PubMed ID: 10930398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macromolecular complexes from sheep and rabbit containing seven aminoacyl-tRNA synthetases. II. Structural characterization of the polypeptide components and immunological identification of the methionyl-tRNA synthetase subunit.
    Mirande M; Kellermann O; Waller JP
    J Biol Chem; 1982 Sep; 257(18):11049-55. PubMed ID: 7107645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of the aminoacyl-tRNA synthetase complex in cultured Chinese hamster ovary cells. Specific depression of the methionyl-tRNA synthetase component upon methionine restriction.
    Lazard M; Mirande M; Waller JP
    J Biol Chem; 1987 Mar; 262(9):3982-7. PubMed ID: 3644822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of 5SrRNA as a positive effector of some aminoacyl-tRNA synthetases in macromolecular complexes, with specific reference to methionyl-tRNA synthetase.
    Ogata K; Kurahashi A; Kenmochi N; Terao K
    J Biochem; 1991 Dec; 110(6):1037-44. PubMed ID: 1665486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chloroplastic methionyl-tRNA synthetase from wheat.
    Carias JR; Mouricout M; Julien R
    Biochem Biophys Res Commun; 1981 Feb; 98(3):735-42. PubMed ID: 6164366
    [No Abstract]   [Full Text] [Related]  

  • 18. Transition-state analogues of aminoacyl adenylates.
    Biryukov AI; Ishmuratov BK; Khomutov RM
    FEBS Lett; 1978 Jul; 91(2):249-52. PubMed ID: 210041
    [No Abstract]   [Full Text] [Related]  

  • 19. Chemical measurement of steady-state levels of ten aminoacyl-transfer ribonucleic acid synthetases in Escherichia coli.
    Neidhardt FC; Bloch PL; Pedersen S; Reeh S
    J Bacteriol; 1977 Jan; 129(1):378-87. PubMed ID: 318645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renaturation of rabbit liver aminoacyl-tRNA synthetases by 80S ribosomes.
    Turkovskaya HV; Belyanskaya LL; Kovalenko MI; El'skaya AV
    Int J Biochem Cell Biol; 1999 Jul; 31(7):759-68. PubMed ID: 10467732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.