These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 7370224)
1. Stable RNA-DNA-RNA polymerase complexes can accompany formation of a single phosphodiester bond. Sylvester JE; Cashel M Biochemistry; 1980 Mar; 19(6):1069-74. PubMed ID: 7370224 [TBL] [Abstract][Full Text] [Related]
2. Poly(dAT) dependent trinucleotide synthesis catalysed by wheat germ RNA polymerase II. Effects of nucleotide substrates and cordycepin triphosphate. Dietrich J; Teissere M; Job C; Job D Nucleic Acids Res; 1985 Sep; 13(17):6155-70. PubMed ID: 4047941 [TBL] [Abstract][Full Text] [Related]
3. Rifampicin inhibition of RNA synthesis by destabilisation of DNA-RNA polymerase-oligonucleotide-complexes. Schulz W; Zillig W Nucleic Acids Res; 1981 Dec; 9(24):6889-906. PubMed ID: 6174947 [TBL] [Abstract][Full Text] [Related]
4. Early steps in the path of nascent ribonucleic acid across the surface of ribonucleic acid polymerase, determined by photoaffinity labeling. DeRiemer LH; Meares CF Biochemistry; 1981 Mar; 20(6):1612-7. PubMed ID: 6164388 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and characterization of fluorescent dinucleotide substrate for the DNA-dependent RNA polymerase from Escherichia coli. Tyagi SC; Wu FY J Biol Chem; 1987 Aug; 262(22):10684-8. PubMed ID: 2440871 [TBL] [Abstract][Full Text] [Related]
6. Non-processive transcription of poly[d(A-T)] by wheat germ RNA polymerase II. Durand R; Job C; Teissère M; Job D FEBS Lett; 1982 Dec; 150(2):477-81. PubMed ID: 7160487 [TBL] [Abstract][Full Text] [Related]
7. Effect of Sarkosyl and heparin on single-step addition reactions catalysed by wheat-germ RNA polymerase II--poly[d(A-T)]transcription complexes. De Mercoyrol L; Job C; Job D Biochem J; 1989 Jun; 260(3):795-801. PubMed ID: 2475103 [TBL] [Abstract][Full Text] [Related]
8. Magnetic resonance and kinetic studies of the role of the divalent cation activator of RNA polymerase from Escherichia coli. Koren R; Mildvan S Biochemistry; 1977 Jan; 16(2):241-9. PubMed ID: 189795 [TBL] [Abstract][Full Text] [Related]
9. Formation of a single phosphodiester bond by RNA polymerase B from calf thymus is not inhibited by alpha-amanitin. Vaisius AC; Wieland T Biochemistry; 1982 Jun; 21(13):3097-101. PubMed ID: 7104312 [TBL] [Abstract][Full Text] [Related]
10. [Display of 8-hydroxy-GTP substrate properties of UTP in the reaction of polynucleotide synthesis catalyzed by RNA-polymerase from Escherichia coli in the presence of poly[d(AT).d(AT)] template]. Bruskov VI; Kuklina OV Mol Biol (Mosk); 1988; 22(3):726-30. PubMed ID: 3054496 [TBL] [Abstract][Full Text] [Related]
11. Effect of disulfide and sulfhydryl reagents on abortive and productive elongation catalyzed by Escherichia coli RNA polymerase. Radłowski M; Job D Acta Biochim Pol; 1994; 41(4):415-9. PubMed ID: 7732758 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of Azotobacter vinelandii RNA polymerase by cibacron blue F3GA. Kumar SA; Krakow JS J Biol Chem; 1977 Aug; 252(16):5724-8. PubMed ID: 885877 [TBL] [Abstract][Full Text] [Related]
13. Spectroscopic analysis of DNA base-pair opening by Escherichia coli RNA polymerase. Temperature and ionic strength effects. Shimer GH; Woody AY; Woody RW Biochim Biophys Acta; 1988 Sep; 950(3):354-65. PubMed ID: 3048407 [TBL] [Abstract][Full Text] [Related]
15. Transcription of synthetic DNA containing sequences with dyad symmetry by wheat-germ RNA polymerase II. Increased rates of product release in single-step addition reactions. Job D; Job C; de Mercoyrol L; Shire D Eur J Biochem; 1991 Feb; 195(3):831-9. PubMed ID: 1999201 [TBL] [Abstract][Full Text] [Related]
16. Studies on the interaction of T7 RNA polymerase with a DNA template containing a site-specifically placed psoralen cross-link. II. Stability and some properties of elongation complexes. Sastry SS; Hearst JE J Mol Biol; 1991 Oct; 221(4):1111-25. PubMed ID: 1942045 [TBL] [Abstract][Full Text] [Related]
17. Active site labeling of the RNA polymerases A, B, and C from yeast. Riva M; Schäffner AR; Sentenac A; Hartmann GR; Mustaev AA; Zaychikov EF; Grachev MA J Biol Chem; 1987 Oct; 262(30):14377-80. PubMed ID: 3667579 [TBL] [Abstract][Full Text] [Related]
18. Cycling of ribonucleic acid polymerase to produce oligonucleotides during initiation in vitro at the lac UV5 promoter. Carpousis AJ; Gralla JD Biochemistry; 1980 Jul; 19(14):3245-53. PubMed ID: 6996702 [TBL] [Abstract][Full Text] [Related]
19. Affinity labeling of the 3'-OH terminal binding site of the ribonucleic acid chain on deoxyribonucleic acid dependent ribonucleic acid polymerase from Escherichia coli. Armstrong VW; Eckstein F Biochemistry; 1979 Nov; 18(23):5117-22. PubMed ID: 387081 [TBL] [Abstract][Full Text] [Related]
20. Efficient and selective initiation by yeast RNA polymerase B in a dinucleotide-primed reaction. Lescure B; Williamson V; Sentenac A Nucleic Acids Res; 1981 Jan; 9(1):31-45. PubMed ID: 7010311 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]