BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 7370724)

  • 1. Neural adaptations for processing the two-note call of the Puerto Rican treefrog, Eleutherodactylus coqui.
    Narins PM; Capranica RR
    Brain Behav Evol; 1980; 17(1):48-66. PubMed ID: 7370724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavioural tuning in a tropical amphibian along an altitudinal gradient.
    Meenderink SWF; Quiñones PM; Narins PM
    Biol Lett; 2017 Dec; 13(12):. PubMed ID: 29237810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural correlates of temperature coupling in the vocal communication system of the gray treefrog (Hyla versicolor).
    Brenowitz EA; Rose G; Capranica RR
    Brain Res; 1985 Dec; 359(1-2):364-7. PubMed ID: 4075155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of tympanic membrane displacement during vocalization of the arboreal frog, Eleutherodactylus coqui.
    Narins PM
    J Acoust Soc Am; 1992 Jun; 91(6):3551-7. PubMed ID: 1619130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity to amplitude modulated sounds in the anuran auditory nervous system.
    Rose GJ; Capranica RR
    J Neurophysiol; 1985 Feb; 53(2):446-65. PubMed ID: 3872351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchronized calling in a treefrog (Smilisca sila). Short behavioral latencies and implications for neural pathways involved in call perception and production.
    Ryan MJ
    Brain Behav Evol; 1986; 29(3-4):196-206. PubMed ID: 3594203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of the auditory midbrain and thalamus in selective phonotaxis in female gray treefrogs (Hyla versicolor).
    Endepols H; Feng AS; Gerhardt HC; Schul J; Walkowiak W
    Behav Brain Res; 2003 Oct; 145(1-2):63-77. PubMed ID: 14529806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional mapping of the auditory midbrain during mate call reception.
    Hoke KL; Burmeister SS; Fernald RD; Rand AS; Ryan MJ; Wilczynski W
    J Neurosci; 2004 Dec; 24(50):11264-72. PubMed ID: 15601932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Call patterns and basilar papilla tuning in cricket frogs. I. Differences among populations and between sexes.
    Wilczynski W; Keddy-Hector AC; Ryan MJ
    Brain Behav Evol; 1992; 39(4):229-37. PubMed ID: 1633554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arginine vasotocin activates aggressive calls during paternal care in the Puerto Rican coquí frog, Eleutherodactylus coqui.
    Ten Eyck GR; ul Haq A
    Neurosci Lett; 2012 Sep; 525(2):152-6. PubMed ID: 22884614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sexual differences in the auditory system of the tree frog Eleutherodactylus coqui.
    Narins PM; Capranica RR
    Science; 1976 Apr; 192(4237):378-80. PubMed ID: 1257772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurophysiological basis of directional hearing in amphibia.
    Pettigrew A; Chung SH; Anson M
    Nature; 1978 Mar; 272(5649):138-42. PubMed ID: 628442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity of neurons in the auditory midbrain of the grassfrog to temporal characteristics of sound. III. Stimulation with natural and synthetic mating calls.
    Eggermont JJ; Epping WJ
    Hear Res; 1986; 24(3):255-68. PubMed ID: 3491817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arginine vasotocin activates advertisement calling and movement in the territorial Puerto Rican frog, Eleutherodactylus coqui.
    Ten Eyck GR
    Horm Behav; 2005 Feb; 47(2):223-9. PubMed ID: 15664026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coding of signals in noise by amphibian auditory nerve fibers.
    Narins PM
    Hear Res; 1987; 26(2):145-54. PubMed ID: 3570992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Call patterns and basilar papilla tuning in cricket frogs. II. Intrapopulation variation and allometry.
    Keddy-Hector AC; Wilczynski W; Ryan MJ
    Brain Behav Evol; 1992; 39(4):238-46. PubMed ID: 1633555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Species specificity and temperature dependency of temporal processing by the auditory midbrain of two species of treefrogs.
    Rose GJ; Brenowitz EA; Capranica RR
    J Comp Physiol A; 1985 Dec; 157(6):763-9. PubMed ID: 3837112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recognition of spectral patterns in the green treefrog: neurobiology and evolution.
    Gerhardt HC
    Exp Biol; 1986; 45(3):167-78. PubMed ID: 3525220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency matching of vocalizations to inner-ear sensitivity along an altitudinal gradient in the coqui frog.
    Meenderink SW; Kits M; Narins PM
    Biol Lett; 2010 Apr; 6(2):278-81. PubMed ID: 19939848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coding of concurrent vocal signals by the auditory midbrain: effects of duration.
    Bodnar DA; Bass AH
    J Comp Physiol A; 2001 Jun; 187(5):381-91. PubMed ID: 11529482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.