These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 7370973)
41. Possible mechanism of induction of liver microsomal monooxygenases by phenobarbital. Tsyrlov IB; Zakharova NE; Gromova OA; Lyakhovich VV Biochim Biophys Acta; 1976 Jan; 421(1):44-56. PubMed ID: 813776 [TBL] [Abstract][Full Text] [Related]
42. Evidence for a predominantly NADH-dependent O-dealkylating system in rat hepatic microsomes. Kuwahara S; Mannering GJ Biochem Pharmacol; 1985 Dec; 34(24):4215-28. PubMed ID: 3935115 [TBL] [Abstract][Full Text] [Related]
43. A sensitive method for detecting in vivo formation of N-nitrosomorpholine and its application to rats given low doses of morpholine and sodium nitrite. Hecht SS; Morrison JB Cancer Res; 1984 Jul; 44(7):2873-7. PubMed ID: 6722816 [TBL] [Abstract][Full Text] [Related]
44. Metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone by inducible and constitutive cytochrome P450 enzymes in rats. Guo Z; Smith TJ; Thomas PE; Yang CS Arch Biochem Biophys; 1992 Oct; 298(1):279-86. PubMed ID: 1524438 [TBL] [Abstract][Full Text] [Related]
45. Characterization of microsomal electron transport components from control, phenobarbital- and 3-methylcholanthrene-treated mice. II. Improved resolution and quantitation of major components in ammonium sulfate fractions from total liver microsomes. Mull RH; Schgaguler M; Mönig H; Voigt T; Flemming K Biochim Biophys Acta; 1977 Dec; 462(3):671-88. PubMed ID: 202308 [TBL] [Abstract][Full Text] [Related]
46. Effect of riboflavin deficiency on phenobarbital and 3-methylcholanthrene induction of microsomal drug-metabolizing enzymes of the rat. Shargel L; Mazel P Biochem Pharmacol; 1973 Oct; 22(19):2365-73. PubMed ID: 4147670 [No Abstract] [Full Text] [Related]
47. N-aralkylated derivatives of 1-aminobenzotriazole as isozyme-selective, mechanism-based inhibitors of guinea pig hepatic cytochrome P-450 dependent monooxygenase activity. Woodcroft KJ; Bend JR Can J Physiol Pharmacol; 1990 Sep; 68(9):1278-85. PubMed ID: 2276091 [TBL] [Abstract][Full Text] [Related]
48. Increase in liver microsomal glutathione S-transferase activity by phenobarbital treatment of rats. Possible involvement of oxidative activation via cytochrome P450. Aniya Y; Shimoji M; Naito A Biochem Pharmacol; 1993 Nov; 46(10):1741-7. PubMed ID: 8250959 [TBL] [Abstract][Full Text] [Related]
49. Induction time course of cytochromes P450 by phenobarbital and 3-methylcholanthrene pretreatment in liver microsomes of Alligator mississippiensis. Ertl RP; Stegeman JJ; Winston GW Biochem Pharmacol; 1998 May; 55(9):1513-21. PubMed ID: 10076545 [TBL] [Abstract][Full Text] [Related]
50. Influences of inducers and inhibitors of the microsomal monooxygenase system on the alkylating intensity of dimethylnitrosamine in mice. Appel KE; Schwarz M; Rickart R; Kunz W J Cancer Res Clin Oncol; 1979 May; 94(1):47-61. PubMed ID: 468899 [TBL] [Abstract][Full Text] [Related]
51. Metabolism of the antimammary cancer antiestrogenic agent tamoxifen. I. Cytochrome P-450-catalyzed N-demethylation and 4-hydroxylation. Mani C; Gelboin HV; Park SS; Pearce R; Parkinson A; Kupfer D Drug Metab Dispos; 1993; 21(4):645-56. PubMed ID: 8104124 [TBL] [Abstract][Full Text] [Related]
52. Rabbit liver microsomal system: study of interaction with two model N-nitrosamines and their metabolism. Sulc M; Kubícková B; Máslová V; Hodek P Gen Physiol Biophys; 2004 Dec; 23(4):423-33. PubMed ID: 15815077 [TBL] [Abstract][Full Text] [Related]
53. Effect of cytochrome P-450 and flavin-containing monooxygenase modifying factors on the in vitro metabolism of amiodarone by rat and rabbit. Young RA; Mehendale HM Drug Metab Dispos; 1987; 15(4):511-7. PubMed ID: 2888625 [TBL] [Abstract][Full Text] [Related]
54. Purification of cytochrome P-450, NADPH-cytochrome P-450 reductase, and epoxide hydratase from a single preparation of rat liver microsomes. Guengerich FP; Martin MV Arch Biochem Biophys; 1980 Dec; 205(2):365-79. PubMed ID: 6781411 [No Abstract] [Full Text] [Related]
55. Differential effects of aging on hepatic microsomal monooxygenase induction by phenobarbital and beta-naphthoflavone. Rikans LE; Notley BA Biochem Pharmacol; 1982 Jul; 31(14):2339-43. PubMed ID: 6812588 [TBL] [Abstract][Full Text] [Related]
56. Immunological identification and effects of 3-methylcholanthrene and phenobarbital on rat pulmonary cytochrome P-450. Keith IM; Olson EB; Wilson NM; Jefcoate CR Cancer Res; 1987 Apr; 47(7):1878-82. PubMed ID: 3545456 [TBL] [Abstract][Full Text] [Related]
57. Characteristic properties of a retinoic acid synthetic cytochrome P-450 purified from liver microsomes of 3-methylcholanthrene-induced rats. Tomita S; Okuyama E; Ohnishi T; Ichikawa Y Biochim Biophys Acta; 1996 Aug; 1290(3):273-81. PubMed ID: 8765131 [TBL] [Abstract][Full Text] [Related]
58. [Identification of molecular forms of cytochrome P-450 isolated from liver microsomes of rats induced with phenobarbital and 3-methylcholanthrene]. Guliaeva LF; Khatsenko OG; Gerasimov KE; Mitrofanov DV; Mishin VM Biokhimiia; 1989 Mar; 54(3):487-94. PubMed ID: 2752066 [TBL] [Abstract][Full Text] [Related]
59. [Effect of modifiers of microsomal enzymes on the enzymatic denitrosation of dialkyl-N-nitrosamines]. Arshinov VIu; Shuliakovskaia TS Eksp Onkol; 1988; 10(2):20-2. PubMed ID: 3391120 [TBL] [Abstract][Full Text] [Related]