These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 737204)
1. Nonlinearities of the human ERG reflected by Wiener kernels. Koblasz AJ Biol Cybern; 1978 Dec; 31(4):187-91. PubMed ID: 737204 [TBL] [Abstract][Full Text] [Related]
2. Generation and transformation of second-order nonlinearity in catfish retina. Naka K; Sakai HM; Ishii N Ann Biomed Eng; 1988; 16(1):53-64. PubMed ID: 3408051 [TBL] [Abstract][Full Text] [Related]
3. Wiener kernels and frequency response functions for the human retina. Koblasz A; Rae JL; Correia MJ; Ni MD IEEE Trans Biomed Eng; 1980 Feb; 27(2):68-75. PubMed ID: 7353897 [No Abstract] [Full Text] [Related]
4. Nonlinear kernels of the human ERG. Larkin RM; Klein S; Ogden TE; Fender DH Biol Cybern; 1979; 35(3):145-60. PubMed ID: 518936 [TBL] [Abstract][Full Text] [Related]
5. Noise-evoked otoacoustic emissions in humans. Maat B; Wit HP; van Dijk P J Acoust Soc Am; 2000 Nov; 108(5 Pt 1):2272-80. PubMed ID: 11108368 [TBL] [Abstract][Full Text] [Related]
6. Effects of aging on the first and second-order kernels of multifocal electroretinogram. Nabeshima T; Tazawa Y; Mita M; Sano M Jpn J Ophthalmol; 2002; 46(3):261-9. PubMed ID: 12063035 [TBL] [Abstract][Full Text] [Related]
7. Effect of glutamate analogues and inhibitory neurotransmitters on the electroretinograms elicited by random sequence stimuli in rabbits. Horiguchi M; Suzuki S; Kondo M; Tanikawa A; Miyake Y Invest Ophthalmol Vis Sci; 1998 Oct; 39(11):2171-6. PubMed ID: 9761298 [TBL] [Abstract][Full Text] [Related]
8. Lateral interaction component and local luminance nonlinearities in the human pattern reversal ERG. Sutter EE; Vaegan Vision Res; 1990; 30(5):659-71. PubMed ID: 2378059 [TBL] [Abstract][Full Text] [Related]
9. Applications of minimum-order Wiener modeling to retinal ganglion cell spatiotemporal dynamics. Citron MC; Marmarelis VZ Biol Cybern; 1987; 57(4-5):241-7. PubMed ID: 3689833 [TBL] [Abstract][Full Text] [Related]
10. A novel method to reduce noise in electroretinography using skin electrodes: a study of noise level, inter-session variability, and reproducibility. Yamashita T; Miki A; Tabuchi A; Funada H; Kondo M Int Ophthalmol; 2017 Apr; 37(2):317-324. PubMed ID: 27278187 [TBL] [Abstract][Full Text] [Related]
11. Response dynamics and receptive-field organization of catfish amacrine cells. Sakai HM; Naka K J Neurophysiol; 1992 Feb; 67(2):430-42. PubMed ID: 1569468 [TBL] [Abstract][Full Text] [Related]
12. [Effects of stimulus intensity on multifocal electroretinograms]. Mita M; Nabeshima T; Tazawa Y; Gotoh T; Sugawara T Nippon Ganka Gakkai Zasshi; 2001 Feb; 105(2):77-82. PubMed ID: 11235204 [TBL] [Abstract][Full Text] [Related]
13. New photic stimulating system with white light-emitting diodes to elicit electroretinograms from zebrafish larvae. Matsubara H; Matsui Y; Miyata R; Nishimura Y; Yamamoto T; Tanaka T; Kondo M Doc Ophthalmol; 2017 Oct; 135(2):147-154. PubMed ID: 28756596 [TBL] [Abstract][Full Text] [Related]
14. Multifocal, pattern and full field electroretinograms in cats with unilateral optic nerve section. Vaegan ; Anderton PJ; Millar TJ Doc Ophthalmol; 2000; 100(2-3):207-29. PubMed ID: 11142747 [TBL] [Abstract][Full Text] [Related]
15. Wiener kernel analysis of responses from anteroventral cochlear nucleus neurons. Wickesberg RE; Dickson JW; Gibson MM; Geisler CD Hear Res; 1984 May; 14(2):155-74. PubMed ID: 6746429 [TBL] [Abstract][Full Text] [Related]
16. What monitor can replace the cathode-ray tube for visual stimulation to elicit multifocal electroretinograms? Matsumoto CS; Shinoda K; Matsumoto H; Seki K; Nagasaka E; Iwata T; Mizota A J Vis; 2014 Aug; 14(9):. PubMed ID: 25096155 [TBL] [Abstract][Full Text] [Related]
17. The interpretation of multifocal binary kernels. Sutter E Doc Ophthalmol; 2000; 100(2-3):49-75. PubMed ID: 11142749 [TBL] [Abstract][Full Text] [Related]
18. Investigation of the temporal properties of the retina using the m-sequence. Hagan RP; Fisher AC; Brown MC Doc Ophthalmol; 2011 Dec; 123(3):179-85. PubMed ID: 22020345 [TBL] [Abstract][Full Text] [Related]
19. Dynamics of neurons controlling movements of a locust hind leg: Wiener kernel analysis of the responses of proprioceptive afferents. Kondoh Y; Okuma J; Newland PL J Neurophysiol; 1995 May; 73(5):1829-42. PubMed ID: 7623084 [TBL] [Abstract][Full Text] [Related]
20. Assessment of the Absolute Excitatory Level of the Retina by Flicker ERG. Tanimoto N; Seeliger MW Methods Mol Biol; 2018; 1753():191-202. PubMed ID: 29564790 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]