These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 737230)

  • 1. [Creatine phosphate synthesis coupled to glycolytic reactions in heart cell cytosol].
    Kupriianov VV; Seppet EK; Saks VA
    Biokhimiia; 1978 Aug; 43(8):1468-77. PubMed ID: 737230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphocretine production coupled to the glycolytic reactions in the cytosol of cardiac cells.
    Kupriyanov VV; Seppet EK; Emelin IV; Saks VA
    Biochim Biophys Acta; 1980 Sep; 592(2):197-210. PubMed ID: 7407089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Functional characterization of the creatine phosphokinase reactions in heart mitochondria and myofibrils].
    Saks VA; Lipina NV; Liulina IV; Chernousova GB; Fetter R; Smirnov VI; Chazov EI
    Biokhimiia; 1976 Aug; 41(8):1460-70. PubMed ID: 1030648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of calcium ions on creatine kinase systems of myocardial cells].
    Saks VA; Kats VM; Fetter R; Liulina NV; Shell V
    Biokhimiia; 1979 Sep; 44(9):1600-13. PubMed ID: 508865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on the control of energy metabolism in mammalian cardiac muscle cells in culture.
    Seraydarian MW
    Recent Adv Stud Cardiac Struct Metab; 1975; 8():181-90. PubMed ID: 1215636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is there the creatine kinase equilibrium in working heart cells?
    Saks VA; Aliev MK
    Biochem Biophys Res Commun; 1996 Oct; 227(2):360-7. PubMed ID: 8878521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The functional coupling between MM isozyme of creatine phosphokinase (EC 2.7.3.2.) and MgATPase of myofibrils and (Na, K)ATPase of plasma membrane in heart cells].
    Saks VA; Lipina NV; Chernousova GB; Sharov VG; Smirnov VN; Chazov EI; Grosse R
    Biokhimiia; 1976 Dec; 41(12):2099-109. PubMed ID: 139170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The effect of sugar phosphates, phosphoenolpyruvate and adenylic acid on muscle, brain and heart creatine kinases].
    Rozanova NA; Chetverikova EP
    Biokhimiia; 1975; 40(6):1299-304. PubMed ID: 1212466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphocreatine synthesis by isolated rat skeletal muscle mitochondria is not dependent upon external ADP: a 31P NMR study.
    Kernec F; Le Tallec N; Nadal L; Bégué JM; Le Rumeur E
    Biochem Biophys Res Commun; 1996 Aug; 225(3):819-25. PubMed ID: 8780696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A comparative study of the role of creatine phosphokinase isoenzymes in energy metabolism of skeletal and heart muscle].
    Saks VA; Seppet EK; Liulina NV
    Biokhimiia; 1977 Apr; 42(4):579-88. PubMed ID: 870086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of lactate and glycolytic intermediates on muscle creatine kinase].
    Chetverikova EP; Rozanova NA
    Biokhimiia; 1980 May; 45(5):845-53. PubMed ID: 7378505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The contents of adenine nucleotides, phosphagens and some glycolytic intermediates in resting muscles from vertebrates and invertebrates.
    Beis I; Newsholme EA
    Biochem J; 1975 Oct; 152(1):23-32. PubMed ID: 1212224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium paradox in the neonatal heart.
    Uemura S; Young H; Matsuoka S; Nakanishi T; Jarmakani JM
    Can J Cardiol; 1985 Mar; 1(2):114-20. PubMed ID: 3850767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of vitamin E deficiency on creatine phosphokinase activity and creatine phosphate levels in the heart muscle].
    Golubeva LIu; Dzhaparidze LM
    Vopr Med Khim; 1986; 32(6):121-2. PubMed ID: 3811276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-ion-mediated allosteric triggering of yeast pyruvate kinase. 1. A multidimensional kinetic linked-function analysis.
    Mesecar AD; Nowak T
    Biochemistry; 1997 Jun; 36(22):6792-802. PubMed ID: 9184162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isozymes of creatine kinase in mammalian cell cultures.
    Van Brussel E; Yang JJ; Seraydarian MW
    J Cell Physiol; 1983 Aug; 116(2):221-6. PubMed ID: 6863402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reassessment of the evidence for the role of secreted ADP in biphasic platelet aggregation. Mechanism of inhibition by creatine phosphate plus creatine phosphokinase.
    Huang EM; Detwiler TC
    J Lab Clin Med; 1980 Jan; 95(1):59-68. PubMed ID: 7350241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of ischemic preconditioning on mitochondrial oxidative phosphorylation and high energy phosphates in rat hearts.
    Kobara M; Tatsumi T; Matoba S; Yamahara Y; Nakagawa C; Ohta B; Matsumoto T; Inoue D; Asayama J; Nakagawa M
    J Mol Cell Cardiol; 1996 Feb; 28(2):417-28. PubMed ID: 8729072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase in catecholamine-stimulated guinea-pig cardiac muscle. Comparison with mass-action ratio of creatine kinase.
    Bünger R; Mukohara N; Kang YH; Mallet RT
    Eur J Biochem; 1991 Dec; 202(3):913-21. PubMed ID: 1765102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of energy transport in heart cells. Mitochondrial isoenzyme of creatine phosphokinase: kinetic properties and regulatory action of Mg2+ ions.
    Saks VA; Chernousova GB; Gukovsky DE; Smirnov VN; Chazov EI
    Eur J Biochem; 1975 Sep; 57(1):273-90. PubMed ID: 126157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.