These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 737230)

  • 41. Compartmentation of adenine nucleotides and phosphocreatine shuttle in cardiac cells: some new evidence.
    Saks VA; Kuznetsov AV; Huchua ZA; Kupriyanov VV
    Adv Exp Med Biol; 1986; 194():103-16. PubMed ID: 3529852
    [No Abstract]   [Full Text] [Related]  

  • 42. In vivo control of phosphofructokinase: system models suggest new experimental protocols.
    Connett RJ
    Am J Physiol; 1989 Oct; 257(4 Pt 2):R878-88. PubMed ID: 2529783
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Estimation of effective concentrations of ATP-regenerating enzymes in cilia of Paramecium caudatum.
    Kutomi O; Takemura M; Kamachi H; Noguchi M
    J Eukaryot Microbiol; 2012; 59(1):49-53. PubMed ID: 22092750
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification and activity of cytosol creatine phosphokinase enzymes in normal and diseased skin.
    Zemtsov A; Cameron GS; Bradley CA; Montalvo-Lugo V; Mattioli F
    Am J Med Sci; 1994 Dec; 308(6):365-9. PubMed ID: 7985727
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interaction of creatine kinase with phosphorylating rabbit heart mitochondria and mitoplasts.
    Vial C; Marcillat O; Goldschmidt D; Font B; Eichenberger D
    Arch Biochem Biophys; 1986 Dec; 251(2):558-66. PubMed ID: 3800385
    [TBL] [Abstract][Full Text] [Related]  

  • 46. THE ORGANIZATION AND REGULATION OF PLANT GLYCOLYSIS.
    Plaxton WC
    Annu Rev Plant Physiol Plant Mol Biol; 1996 Jun; 47():185-214. PubMed ID: 15012287
    [TBL] [Abstract][Full Text] [Related]  

  • 47. ATP-ADP-dependent phosphorylations of glycolysis metabolites, creatine and glycerol: their compartition and thermodynamic relationship in gastrocnemius muscle cell of exercised guinea pigs.
    Feraudi M; Kolb J; Hassel M; Weicker H
    Arch Int Physiol Biochim; 1983 Nov; 91(4):351-60. PubMed ID: 6202265
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phosphocreatine represents a thermodynamic and functional improvement over other muscle phosphagens.
    Ellington WR
    J Exp Biol; 1989 May; 143():177-94. PubMed ID: 2543728
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Does muscle creatine phosphokinase have access to the total pool of phosphocreatine plus creatine?
    Hochachka PW; Mossey MK
    Am J Physiol; 1998 Mar; 274(3):R868-72. PubMed ID: 9530257
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of magnesium depletion on myocardial high-energy phosphates and contractility.
    Savabi F; Gura V; Bessman S; Brautbar N
    Biochem Med Metab Biol; 1988 Apr; 39(2):131-9. PubMed ID: 3377902
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Time dependent responses of glycolytic intermediates in a detailed glycolytic model of Lactococcus lactis during glucose run-out experiments.
    Hoefnagel MH; van der Burgt A; Martens DE; Hugenholtz J; Snoep JL
    Mol Biol Rep; 2002; 29(1-2):157-61. PubMed ID: 12241048
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transition state of the glycolytic pathway under FDP saturating conditions: experimental studies and a theoretical model.
    García-Tejedor AJ; Riol-Cimas JM; Moráni F; Meléndez-Hevia E; Montero F
    Int J Biochem; 1988; 20(4):421-6. PubMed ID: 3366299
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Does oxidative phosphorylation increase the rate of creatine phosphate synthesis in heart mitochondria or not?
    Saks VA; Seppet EK; Smirnov VN
    J Mol Cell Cardiol; 1979 Dec; 11(12):1265-73. PubMed ID: 529296
    [No Abstract]   [Full Text] [Related]  

  • 54. Analysis of metabolic control: new insights using scaled creatine kinase model.
    Connett RJ
    Am J Physiol; 1988 Jun; 254(6 Pt 2):R949-59. PubMed ID: 2837918
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Thyroid hormones and the creatine kinase system in cardiac cells.
    Seppet EK; Saks VA
    Mol Cell Biochem; 1994; 133-134():299-309. PubMed ID: 7808461
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Plant cytosolic pyruvate kinase: a kinetic study.
    Podestá FE; Plaxton WC
    Biochim Biophys Acta; 1992 Nov; 1160(2):213-20. PubMed ID: 1445948
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of increasing extracellular pH on protein synthesis and protein degradation in the perfused working rat heart.
    Fuller SJ; Gaitanaki CJ; Sugden PH
    Biochem J; 1989 Apr; 259(1):173-9. PubMed ID: 2719641
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Release of hypoxanthine from and enzyme depletion in rat heart cell cultures deprived of oxygen and metabolic substrates.
    Van der Laarse A; Graf-Minor ML; Witteveen SA
    Clin Chim Acta; 1979 Jan; 91(1):47-52. PubMed ID: 761391
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Changes with age of myocardial creatine phosphokinase in the male Fischer rat.
    Chesky JA; Rockstein M; Lopez T
    Mech Ageing Dev; 1980 Mar; 12(3):237-43. PubMed ID: 6451775
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Investigations on the function of creatine kinase in Ehrlich ascites tumor cells.
    Becker S; Schneider F
    Biol Chem Hoppe Seyler; 1989 Apr; 370(4):357-64. PubMed ID: 2757796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.