These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 7372524)

  • 1. Muscle respiratory capacity and fiber type as determinants of the lactate threshold.
    Ivy JL; Withers RT; Van Handel PJ; Elger DH; Costill DL
    J Appl Physiol Respir Environ Exerc Physiol; 1980 Mar; 48(3):523-7. PubMed ID: 7372524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skeletal muscle determinants of maximum aerobic power in man.
    Ivy JL; Costill DL; Maxwell BD
    Eur J Appl Physiol Occup Physiol; 1980; 44(1):1-8. PubMed ID: 7190491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of muscle fiber type and pedal frequency on oxygen uptake kinetics of heavy exercise.
    Barstow TJ; Jones AM; Nguyen PH; Casaburi R
    J Appl Physiol (1985); 1996 Oct; 81(4):1642-50. PubMed ID: 8904581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of the physiological factors determining endurance performance ability.
    Coyle EF
    Exerc Sport Sci Rev; 1995; 23():25-63. PubMed ID: 7556353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle fiber composition and blood ammonia levels after intense exercise in humans.
    Dudley GA; Staron RS; Murray TF; Hagerman FC; Luginbuhl A
    J Appl Physiol Respir Environ Exerc Physiol; 1983 Feb; 54(2):582-6. PubMed ID: 6833053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lactate accumulation in muscle and blood during submaximal exercise.
    Tesch PA; Daniels WL; Sharp DS
    Acta Physiol Scand; 1982 Mar; 114(3):441-6. PubMed ID: 7136774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of exhaustive, isometric training on lactate accumulation in different muscle fiber types.
    Tesch PA; Karlsson J
    Int J Sports Med; 1984 Apr; 5(2):89-91. PubMed ID: 6715103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progressive metabolite changes in individual human muscle fibers with increasing work rates.
    Ivy JL; Chi MM; Hintz CS; Sherman WM; Hellendall RP; Lowry OH
    Am J Physiol; 1987 Jun; 252(6 Pt 1):C630-9. PubMed ID: 3591933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerobic and anaerobic thresholds determined from venous lactate or from ventilation and gas exchange in relation to muscle fiber composition.
    Aunola S; Rusko H
    Int J Sports Med; 1986 Jun; 7(3):161-6. PubMed ID: 3733312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of lactate accumulation of EMG frequency spectrum during repeated concentric contractions.
    Tesch PA; Komi PV; Jacobs I; Karlsson J; Viitasalo JT
    Acta Physiol Scand; 1983 Sep; 119(1):61-7. PubMed ID: 6650206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between electromyography and work intensity revisited: a brief review with references to lacticacidosis and hyperammonia.
    Taylor AD; Bronks R; Bryant AL
    Electromyogr Clin Neurophysiol; 1997 Oct; 37(7):387-98. PubMed ID: 9402427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NAD in muscle of man at rest and during exercise.
    Graham T; Sjøgaard G; Löllgen H; Saltin B
    Pflugers Arch; 1978 Aug; 376(1):35-9. PubMed ID: 212709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between lactate threshold during running and relative gastrocnemius area.
    Atomi Y; Fukunaga T; Hatta H; Yamamoto Y
    J Appl Physiol (1985); 1987 Dec; 63(6):2343-7. PubMed ID: 3325487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of cell type in net lactate removal by skeletal muscle.
    Pagliassotti MJ; Donovan CM
    Am J Physiol; 1990 Apr; 258(4 Pt 1):E635-42. PubMed ID: 2110420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High efficiency of type I muscle fibers improves performance.
    Horowitz JF; Sidossis LS; Coyle EF
    Int J Sports Med; 1994 Apr; 15(3):152-7. PubMed ID: 8005729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lactate release in relation to tissue lactate in human skeletal muscle during exercise.
    Jorfeldt L; Juhlin-Dannfelt A; Karlsson J
    J Appl Physiol Respir Environ Exerc Physiol; 1978 Mar; 44(3):350-2. PubMed ID: 632175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lactate efflux is unrelated to intracellular PO2 in a working red muscle in situ.
    Connett RJ; Gayeski TE; Honig CR
    J Appl Physiol (1985); 1986 Aug; 61(2):402-8. PubMed ID: 3745033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle and blood ammonia and lactate responses to prolonged exercise with hyperoxia.
    Graham TE; Pedersen PK; Saltin B
    J Appl Physiol (1985); 1987 Oct; 63(4):1457-62. PubMed ID: 3693180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MyHC II content in the vastus lateralis m. quadricipitis femoris is positively correlated with the magnitude of the non-linear increase in the VO2 / power output relationship in humans.
    Zoladz JA; Duda K; Karasinski J; Majerczak J; Kolodziejski L; Korzeniewski B
    J Physiol Pharmacol; 2002 Dec; 53(4 Pt 2):805-21. PubMed ID: 12510865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lactate transport studied in sarcolemmal giant vesicles from human muscle biopsies: relation to training status.
    Pilegaard H; Bangsbo J; Richter EA; Juel C
    J Appl Physiol (1985); 1994 Oct; 77(4):1858-62. PubMed ID: 7836210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.