These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 7372633)

  • 1. Energy-linked quinacrine fluorescence changes in submitochondrial particles from skeletal muscle mitochondria. Evidence for intramembrane H+ transfer as a primary reaction of energy coupling.
    Storey BT; Scott DM; Lee C
    J Biol Chem; 1980 Jun; 255(11):5224-9. PubMed ID: 7372633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy-linked H+ efflux and uncoupler-induced H+ influx in submitochondrial particles from skeletal muscle.
    Scott DM; Storey BT; Lee CP
    Biochem Biophys Res Commun; 1979 Apr; 87(4):1058-65. PubMed ID: 37831
    [No Abstract]   [Full Text] [Related]  

  • 3. Energy-linked protonation of quinacrine in beef heart submitochondrial membranes.
    Huang CS; Kopacz SJ; Lee CP
    Biochim Biophys Acta; 1977 Feb; 459(2):241-9. PubMed ID: 13828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. L-3-Glycerol phosphate oxidation with energy coupling in submitochondrial particles from skeletal muscle mitochondria.
    Scott DM; Storey BT; Lee CP
    Biochem Biophys Res Commun; 1978 Jul; 83(2):641-8. PubMed ID: 697846
    [No Abstract]   [Full Text] [Related]  

  • 5. Mechanistic differences in the energy-linked fluorescence decreases of 9-aminoacridine dyes associated with bovine heart submitochondrial membranes.
    Huang CS; Kopacz SJ; Lee CP
    Biochim Biophys Acta; 1983 Jan; 722(1):107-15. PubMed ID: 6824642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy dependent hydrogen ion accumulation in submitochondrial particles.
    Rottenberg H; Lee CP
    Biochemistry; 1975 Jun; 14(12):2675-80. PubMed ID: 238570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct measurement of lipid peroxidation in submitochondrial particles.
    de Hingh YC; Meyer J; Fischer JC; Berger R; Smeitink JA; Op den Kamp JA
    Biochemistry; 1995 Oct; 34(39):12755-60. PubMed ID: 7548029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of iron deficiency on energy conservation in rat liver and skeletal muscle submitochondrial particles.
    Evans TC; Mackler B
    Biochem Med; 1985 Aug; 34(1):93-9. PubMed ID: 4052063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Induction of hydrogen ion transport in mitochondrial membranes].
    Sharyshev AA; Novogorodov SA; Iaguzhinskiĭ LS
    Biofizika; 1982; 27(1):52-7. PubMed ID: 7066402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Ca2+-binding lipoprotein from submitochondrial particles of rat skeletal muscle or bovine heart.
    Yamada EW; Huzel NJ; Burgess JW
    J Biol Chem; 1982 Feb; 257(4):2087-91. PubMed ID: 6460034
    [No Abstract]   [Full Text] [Related]  

  • 11. Control of electron transfer in the cytochrome system of mitochondria by pH, transmembrane pH gradient and electrical potential. The cytochromes b-c segment.
    Papa S; Lorusso M; Izzo G; Capuano F
    Biochem J; 1981 Feb; 194(2):395-406. PubMed ID: 7305997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does the energy state of mitochondria influence the surface potential of the inner mitochondrial membrane? A critical appraisal.
    Wojtczak L; Nałecz MJ; Famulski KS; Dygas A; Szewczyk A
    Acta Biochim Pol; 1987; 34(3):299-318. PubMed ID: 2825455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intramitochondrial positions of ubiquinone and iron-sulphur centres determined by dipolar interactions with paramagnetic ions.
    Case GD; Ohnishi T; Leigh JS
    Biochem J; 1976 Dec; 160(3):785-95. PubMed ID: 189759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of atebrin fluorescence changes in energized submitochondrial particles.
    Massari S; Dell'Antone P; Colonna R; Azzone GF
    Biochemistry; 1974 Feb; 13(5):1038-46. PubMed ID: 4813365
    [No Abstract]   [Full Text] [Related]  

  • 15. Cooperative proton-transfer reactions in the respiratory chain: redox bohr effects.
    Papa S; Guerrieri F; Izzo G
    Methods Enzymol; 1986; 126():331-43. PubMed ID: 3272339
    [No Abstract]   [Full Text] [Related]  

  • 16. Energetics of ATP-driven reverse electron transfer from cytochrome c to fumarate and from succinate to NAD in submitochondrial particles.
    Scholes TA; Hinkle PC
    Biochemistry; 1984 Jul; 23(14):3341-5. PubMed ID: 6087893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anion and amine uptake and uncoupling in submitochondrial particles.
    Azzone GF; Gutweniger H; Viola E; Strinna E; Massari S; Colonna R
    Eur J Biochem; 1976 Feb; 62(1):77-86. PubMed ID: 2477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the mechanism of action of oligomycin and acidic uncouplers on proton translocation and energy transfer in "sonic" submitochondrial particles.
    Guerrieri F; Lorusso M; Pansini A; Ferrarese V; Papa S
    J Bioenerg Biomembr; 1976 Jun; 8(3):131-42. PubMed ID: 9385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy transfer by redox proteins in mitochondria.
    Papa S; Lorusso M; Guerrieri F
    Prog Clin Biol Res; 1982; 102 Pt B():423-37. PubMed ID: 6298803
    [No Abstract]   [Full Text] [Related]  

  • 20. Inhibition of the energy-linked fluorescence response of quinacrine with local anesthetics.
    Mueller DM; Lee CP
    FEBS Lett; 1982 Jan; 137(1):45-8. PubMed ID: 7067822
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.