BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 7372660)

  • 1. Energy metabolism of skeletal muscle containing cyclocreatine phosphate. Delay in onset of rigor mortis and decreased glycogenolysis in response to ischemia or epinephrine.
    Annesley TM; Walker JB
    J Biol Chem; 1980 May; 255(9):3924-30. PubMed ID: 7372660
    [No Abstract]   [Full Text] [Related]  

  • 2. Enhanced ability of skeletal muscle containing cyclocreatine phosphate to sustain ATP levels during ischemia following beta-adrenergic stimulation.
    Turner DM; Walker JB
    J Biol Chem; 1987 May; 262(14):6605-9. PubMed ID: 3571272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relative abilities of phosphagens with different thermodynamic or kinetic properties to help sustain ATP and total adenylate pools in heart during ischemia.
    Turner DM; Walker JB
    Arch Biochem Biophys; 1985 May; 238(2):642-51. PubMed ID: 3994395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accumulation of analgo of phosphocreatine in muscle of chicks fed 1-carboxymethyl-2-iminoimidazolidine (cyclocreatine).
    Griffiths GR; Walker JB
    J Biol Chem; 1976 Apr; 251(7):2049-54. PubMed ID: 1270421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and accumulation of an extremely stable high-energy phosphate compound by muscle, heart, and brain of animals fed the creatine analog, 1-carboxyethyl-2-iminoimidazolidine (homocyclocreatine).
    Roberts JJ; Walker JB
    Arch Biochem Biophys; 1983 Feb; 220(2):563-71. PubMed ID: 6824340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Creatine phosphate as the preferred early indicator of ischemia in muscular tissues.
    Ye J; Clark MG; Colquhoun EQ
    J Surg Res; 1996 Feb; 61(1):227-36. PubMed ID: 8769971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Dependence of creatine kinase and glycogen synthetase activities of skeletal muscles on state of adenine nucleotide phosphorylation and cAMP metabolism].
    Iakovlev NN; Chagovets NR; Maksimova LV
    Ukr Biokhim Zh (1978); 1980; 52(3):293-8. PubMed ID: 6247797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy metabolism in single human muscle fibers during contraction without and with epinephrine infusion.
    Greenhaff PL; Ren JM; Söderlund K; Hultman E
    Am J Physiol; 1991 May; 260(5 Pt 1):E713-8. PubMed ID: 2035627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The creatine-creatine phosphate energy shuttle.
    Bessman SP; Carpenter CL
    Annu Rev Biochem; 1985; 54():831-62. PubMed ID: 3896131
    [No Abstract]   [Full Text] [Related]  

  • 10. Energy metabolism in muscle.
    Hultman E; Chasiotis D; Sjöholm H
    Prog Clin Biol Res; 1983; 136():257-72. PubMed ID: 6364170
    [No Abstract]   [Full Text] [Related]  

  • 11. The myopathy of phosphate depletion.
    Brautbar N; Massry SG
    Adv Exp Med Biol; 1984; 178():363-75. PubMed ID: 6507165
    [No Abstract]   [Full Text] [Related]  

  • 12. Energy metabolism and adenine nucleotide degradation in twitch-stimulated rat hindlimb during ischemia-reperfusion.
    Welsh DG; Lindinger MI
    Am J Physiol; 1993 Apr; 264(4 Pt 1):E655-61. PubMed ID: 8476043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for a relationship between ATP hydrolysis and changes in extracellular space and fibre diameter during rigor development in skeletal muscle.
    Heffron JJ; Hegarty PV
    Comp Biochem Physiol A Comp Physiol; 1974 Sep; 49(1A):43-56. PubMed ID: 4153729
    [No Abstract]   [Full Text] [Related]  

  • 14. Effect of training and 15-, 25-, and 42-km contests on the skeletal muscle content of adenine and guanine nucleotides, creatine phosphate, and glycogen.
    van der Vusse GJ; Janssen GM; Coumans WA; Kuipers H; Does RJ; ten Hoor F
    Int J Sports Med; 1989 Oct; 10 Suppl 3():S146-52. PubMed ID: 2599732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen debt and high-energy phosphates in gastrocnemius muscle of the dog.
    Piiper J; Di Prampero PE; Cerretelli P
    Am J Physiol; 1968 Sep; 215(3):523-31. PubMed ID: 5670989
    [No Abstract]   [Full Text] [Related]  

  • 16. [Energy-rich phosphate compounds in the myocardium under the influence of adrenaline, noradrenaline and isoproterenol].
    Krautzberger W; Kammermeier H; Kammermeier B
    Pflugers Arch; 1969; 312(1):R6-7. PubMed ID: 5390286
    [No Abstract]   [Full Text] [Related]  

  • 17. Alteration by halothane of glucose and glycogen metabolism in rat skeletal muscle.
    Rosenberg H; Haugaard N; Haugaard ES
    Anesthesiology; 1977 May; 46(5):313-8. PubMed ID: 851240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of physical effort on ATP and glycogen contents in the skeletal and cardiac muscles in white rats (Mus norvegiens albus)].
    LUBANSKA L
    Acta Physiol Pol; 1960; 11():808-9. PubMed ID: 13763924
    [No Abstract]   [Full Text] [Related]  

  • 19. Calculated equilibria of phosphocreatine and adenosine phosphates during utilization of high energy phosphate by muscle.
    McGilvery RW; Murray TW
    J Biol Chem; 1974 Sep; 249(18):5845-50. PubMed ID: 4369824
    [No Abstract]   [Full Text] [Related]  

  • 20. Effects of cortisone and epinephrine on the glycogen of skeletal muscles of mice.
    GREWE TM; WILLIAMS WL
    Anat Rec; 1958 Feb; 130(2):145-55. PubMed ID: 13545570
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.