BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 7372660)

  • 21. Physical and biochemistry changes in rigor mortis of cardiac muscle.
    Seelye RN; Nevalainen TJ; Gavin JB; Webster VJ
    Biochem Med; 1979 Jun; 21(3):323-32. PubMed ID: 496923
    [No Abstract]   [Full Text] [Related]  

  • 22. Effect of a short-term dietary creatine supplementation on high-energy phosphates in the rat myocardium.
    Brzezińska Z; Nazar K; Kaciuba-Uściłko H; Falecka-Wieczorek I; Wójcik-Ziółkowska E
    J Physiol Pharmacol; 1998 Dec; 49(4):591-5. PubMed ID: 10069699
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The shortening of rabbit muscles during rigor mortis; its relation to the breakdown of adenosine triphosphate and creatine phosphate and to muscular contraction.
    BENDALL JR
    J Physiol; 1951 Jun; 114(1-2):71-88. PubMed ID: 14861784
    [No Abstract]   [Full Text] [Related]  

  • 24. The regulation of glycogen phosphorylase and glycogen breakdown in human skeletal muscle.
    Chasiotis D
    Acta Physiol Scand Suppl; 1983; 518():1-68. PubMed ID: 6139934
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Epinephrine infusion enhances muscle glycogenolysis during prolonged electrical stimulation.
    Spriet LL; Ren JM; Hultman E
    J Appl Physiol (1985); 1988 Apr; 64(4):1439-44. PubMed ID: 3378979
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Remarks on the irritability and onset of rigor mortis in skeletal muscles].
    Böhm E
    Beitr Gerichtl Med; 1986; 44():439-50. PubMed ID: 3767906
    [No Abstract]   [Full Text] [Related]  

  • 27. Effect of ischemia and denervation on metabolism of fast and slow mammalian skeletal muscle.
    Kauffman FC; Albuquerque EX
    Exp Neurol; 1970 Jul; 28(1):46-63. PubMed ID: 5433663
    [No Abstract]   [Full Text] [Related]  

  • 28. Intracellular sodium flux and high-energy phosphorus metabolites in ischemic skeletal muscle.
    Blum H; Schnall MD; Chance B; Buzby GP
    Am J Physiol; 1988 Sep; 255(3 Pt 1):C377-84. PubMed ID: 3421318
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cyclocreatine phosphate, an analogue of creatine phosphate, does not improve hypoxic tolerance in mice.
    Artru AA; Michenfelder JD
    J Neurochem; 1982 Oct; 39(4):1198-200. PubMed ID: 7119791
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Utilization of cyclocreatine phosphate, and analogue of creatine phosphate, by mouse brain during ischemia and its sparing action on brain energy reserves.
    Woznicki DT; Walker JB
    J Neurochem; 1980 May; 34(5):1247-53. PubMed ID: 7373304
    [No Abstract]   [Full Text] [Related]  

  • 31. Development of rigor mortis is not affected by muscle volume.
    Kobayashi M; Ikegaya H; Takase I; Hatanaka K; Sakurada K; Iwase H
    Forensic Sci Int; 2001 Apr; 117(3):213-9. PubMed ID: 11248452
    [TBL] [Abstract][Full Text] [Related]  

  • 32. G-1,6-P2, glycolysis, and energy metabolism during circulatory occlusion in human skeletal muscle.
    Katz A
    Am J Physiol; 1988 Aug; 255(2 Pt 1):C140-4. PubMed ID: 3407759
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of bethanechol on glycolysis and high energy phosphate metabolism of the rabbit urinary bladder.
    Levin RM; Ruggieri MR; Gill HS; Haugaard N; Wein AJ
    J Urol; 1988 Mar; 139(3):646-9. PubMed ID: 2893843
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Changes in the adenosine polyphosphate, creatine phosphate, glycogen and lactic acid contents, as well as in the co-enzyme A activity, of the brain in non-fatal potassium cyanide poisoning].
    ESTLER CJ
    Klin Wochenschr; 1961 Feb; 39():149-50. PubMed ID: 13697455
    [No Abstract]   [Full Text] [Related]  

  • 35. Metabolic changes in rat sceletal muscle after acute arterial occlusion.
    Stock W; Bohn HJ; Isselhard W
    Vasc Surg; 1971; 5(5):249-55. PubMed ID: 5159422
    [No Abstract]   [Full Text] [Related]  

  • 36. [Control exercized by adrenalin on turnover time of ATP and ADP at the level of glycolysis and oxidative phosphorylations in muscle].
    Morelis R; Gautheron D
    Bull Soc Chim Biol (Paris); 1968; 50(12):2503-20. PubMed ID: 4306333
    [No Abstract]   [Full Text] [Related]  

  • 37. Reconsideration of the sequence of rigor mortis through postmortem changes in adenosine nucleotides and lactic acid in different rat muscles.
    Kobayashi M; Takatori T; Iwadate K; Nakajima M
    Forensic Sci Int; 1996 Oct; 82(3):243-53. PubMed ID: 8948133
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of energy metabolism by creatine in cardiac and skeletal muscle cells in culture.
    Seraydarian MW; Artaza L
    J Mol Cell Cardiol; 1976 Sep; 08(9):669-78. PubMed ID: 972404
    [No Abstract]   [Full Text] [Related]  

  • 39. 31P NMR study of the regulation of glycogenolysis in iodoacetate-treated skeletal muscle.
    Yamada T; Sugi H
    Adv Exp Med Biol; 1988; 226():449-56. PubMed ID: 3407526
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [The energy metabolism of skeletal muscle in relation to aging].
    Honorati MC; Ermini M; Stecconi R
    Boll Soc Ital Biol Sper; 1973 Oct; 49(20):1134-40. PubMed ID: 4802342
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.