These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 737284)

  • 1. Modeling rigor cross-bridge patterns in muscle I. Initial studies of the rigor lattice of insect flight muscle.
    Haselgrove JC; Reedy MK
    Biophys J; 1978 Dec; 24(3):713-28. PubMed ID: 737284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myosin head configuration in relaxed insect flight muscle: x-ray modeled resting cross-bridges in a pre-powerstroke state are poised for actin binding.
    AL-Khayat HA; Hudson L; Reedy MK; Irving TC; Squire JM
    Biophys J; 2003 Aug; 85(2):1063-79. PubMed ID: 12885653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct demonstration of the cross-bridge recovery stroke in muscle thick filaments in aqueous solution by using the hydration chamber.
    Sugi H; Minoda H; Inayoshi Y; Yumoto F; Miyakawa T; Miyauchi Y; Tanokura M; Akimoto T; Kobayashi T; Chaen S; Sugiura S
    Proc Natl Acad Sci U S A; 2008 Nov; 105(45):17396-401. PubMed ID: 18987316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geometrical conditions indispensable for muscle contraction.
    Skubiszak L
    Int J Mol Sci; 2011; 12(4):2138-57. PubMed ID: 21731432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Straightening Out the Elasticity of Myosin Cross-Bridges.
    Linari M; Piazzesi G; Pertici I; Dantzig JA; Goldman YE; Lombardi V
    Biophys J; 2020 Mar; 118(5):994-1002. PubMed ID: 31968230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methods for identifying and averaging variable molecular conformations in tomograms of actively contracting insect flight muscle.
    Wu S; Liu J; Reedy MC; Winkler H; Reedy MK; Taylor KA
    J Struct Biol; 2009 Dec; 168(3):485-502. PubMed ID: 19698791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The intriguing dual lattices of the Myosin filaments in vertebrate striated muscles: evolution and advantage.
    Luther PK; Squire JM
    Biology (Basel); 2014 Dec; 3(4):846-65. PubMed ID: 25478994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The different muscle-energetics during shortening and stretch.
    Jarosch R
    Int J Mol Sci; 2011; 12(5):2891-900. PubMed ID: 21686156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of long-range myofibrillar crystallinity in insect flight muscle as examined by X-ray cryomicrodiffraction.
    Iwamoto H; Inoue K; Yagi N
    Proc Biol Sci; 2006 Mar; 273(1587):677-85. PubMed ID: 16608686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of surface plasmon coupled emission to study of muscle.
    Borejdo J; Gryczynski Z; Calander N; Muthu P; Gryczynski I
    Biophys J; 2006 Oct; 91(7):2626-35. PubMed ID: 16844757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling between myosin head conformation and the thick filament backbone structure.
    Hu Z; Taylor DW; Edwards RJ; Taylor KA
    J Struct Biol; 2017 Dec; 200(3):334-342. PubMed ID: 28964844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle.
    Hooper SL; Hobbs KH; Thuma JB
    Prog Neurobiol; 2008 Oct; 86(2):72-127. PubMed ID: 18616971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct modeling of x-ray diffraction pattern from skeletal muscle in rigor.
    Koubassova NA; Tsaturyan AK
    Biophys J; 2002 Aug; 83(2):1082-97. PubMed ID: 12124288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Backward movements of cross-bridges by application of stretch and by binding of MgADP to skeletal muscle fibers in the rigor state as studied by x-ray diffraction.
    Takezawa Y; Kim DS; Ogino M; Sugimoto Y; Kobayashi T; Arata T; Wakabayashi K
    Biophys J; 1999 Apr; 76(4):1770-83. PubMed ID: 10096877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of adenosine diphosphate on the structure of myosin cross-bridges: an X-ray diffraction study on a single skinned frog muscle fibre.
    Takemori S; Yamaguchi M; Yagi N
    J Muscle Res Cell Motil; 1995 Dec; 16(6):571-7. PubMed ID: 8750228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flash and smash: rapid freezing of muscle fibers activated by photolysis of caged ATP.
    Hirose K; Lenart TD; Murray JM; Franzini-Armstrong C; Goldman YE
    Biophys J; 1993 Jul; 65(1):397-408. PubMed ID: 8369445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural change of crossbridges of rabbit skeletal muscle during isometric contraction.
    Hirose K; Wakabayashi T
    J Muscle Res Cell Motil; 1993 Aug; 14(4):432-45. PubMed ID: 8227302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oblique section 3-D reconstruction of relaxed insect flight muscle reveals the cross-bridge lattice in helical registration.
    Schmitz H; Lucaveche C; Reedy MK; Taylor KA
    Biophys J; 1994 Oct; 67(4):1620-33. PubMed ID: 7819494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometrical factors influencing muscle force development. I. The effect of filament spacing upon axial forces.
    Schoenberg M
    Biophys J; 1980 Apr; 30(1):51-67. PubMed ID: 6894872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometrical constraints affecting crossbridge formation in insect flight muscle.
    Haselgrove JC; Reedy MK
    J Muscle Res Cell Motil; 1984 Feb; 5(1):3-24. PubMed ID: 6715526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.