These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Rheological parameters for the viscosity viscoelasticity and thixotropy of blood. Thurston GB Biorheology; 1979; 16(3):149-62. PubMed ID: 508925 [No Abstract] [Full Text] [Related]
5. Hybrid concept on the mechanical test method of small caliber blood vessel. Yokobori AT; Ohkuma T; Yoshinari H; Ichiki M; Ohuchi H; Yokobori T Biomed Mater Eng; 1993; 3(4):175-83. PubMed ID: 8205059 [TBL] [Abstract][Full Text] [Related]
6. Maxwell fluid behavior of blood at low shear rate. McMillan DE; Utterback N Biorheology; 1980; 17(4):343-54. PubMed ID: 7260346 [No Abstract] [Full Text] [Related]
7. Viscoelastic properties of plant cell walls--II. Effect of pre-extension rate on stress relaxation. Fujihara S; Yamamoto R; Masuda Y Biorheology; 1978; 15(2):77-85. PubMed ID: 747758 [No Abstract] [Full Text] [Related]
8. Experimental study of wave propagation through viscous fluid contained in viscoelastic cylindrical tube under static stresses. Flaud P; Geiger D; Odou C; Quemada D Biorheology; 1975 Oct; 12(6):347-54. PubMed ID: 1212515 [No Abstract] [Full Text] [Related]
9. Viscoelastic properties of plant cell walls--I. Mathematical formulation for stress relaxation with consideration for pre-extension rate. Fujihara S; Yamamoto R; Masuda Y Biorheology; 1978; 15(2):63-75. PubMed ID: 747757 [No Abstract] [Full Text] [Related]
10. Viscoelastic properties of plant cell walls--III. Hysteresis loop in the stress-strain curve at constant strain rate. Masuda Y Biorheology; 1978; 15(2):87-97. PubMed ID: 747759 [No Abstract] [Full Text] [Related]
11. Wave propagation through a Newtonian fluid contained within a thick-walled, viscoelastic tube: the influence of wall compressibility. Cox RH J Biomech; 1970 May; 3(3):317-35. PubMed ID: 5521549 [No Abstract] [Full Text] [Related]
12. Theoretical foundation on a noninvasive estimation for viscoelastic mechanical property of blood vessels by ultrasonic Doppler effect. Yoshinari H; Yokobori AT; Ohkuma T Biomed Mater Eng; 1994; 4(2):77-86. PubMed ID: 7920200 [TBL] [Abstract][Full Text] [Related]
13. Surface phenomena in hemorheology: their theoretical, experimental and clinical aspects. Ann N Y Acad Sci; 1983; 416():1-761. PubMed ID: 6587803 [No Abstract] [Full Text] [Related]
14. A two-fluid model for blood flow through small diameter tubes with non-zero couple stress boundary condition at interface. Chaturani P; Upadhya VS; Mahajan SP Biorheology; 1981; 18(2):245-53. PubMed ID: 7317586 [No Abstract] [Full Text] [Related]
15. Secondary effects in cone and plate viscometers. Heuser G Biorheology; 1978; 15(3-4):311-20. PubMed ID: 737331 [No Abstract] [Full Text] [Related]
16. Viscoelastic wave propagation and rheologic properties of skeletal muscle. Truong XT Am J Physiol; 1974 Feb; 226(2):256-64. PubMed ID: 4544064 [No Abstract] [Full Text] [Related]
17. Biophysical analyses of blood vessel walls and blood flow. Roach MR Annu Rev Physiol; 1977; 39():51-71. PubMed ID: 139845 [No Abstract] [Full Text] [Related]
18. High frequency pressure propagation in viscoelastic tubes: a new experimental approach. Ursino M; Artioli E Biomed Mater Eng; 1992; 2(1):19-31. PubMed ID: 1458201 [TBL] [Abstract][Full Text] [Related]
19. [Comparative studies on the dynamic elasticity and viscosity of blood vessels, rubber and synthetic elastomers. II]. HARDUNG V Helv Physiol Pharmacol Acta; 1953; 11(2):194-211. PubMed ID: 13095890 [No Abstract] [Full Text] [Related]
20. Multi-scale finite element analyses for stress and strain evaluations of braid fibril artificial blood vessel and smooth muscle cell. Nakamachi E; Uchida T; Kuramae H; Morita Y Int J Numer Method Biomed Eng; 2014 Aug; 30(8):796-813. PubMed ID: 24599892 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]