These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Rheology of red blood cells under flow in highly confined microchannels: I. effect of elasticity. Lázaro GR; Hernández-Machado A; Pagonabarraga I Soft Matter; 2014 Oct; 10(37):7195-206. PubMed ID: 25105872 [TBL] [Abstract][Full Text] [Related]
26. Pulsatile flow of a couple stress fluid through circular tubes with applications to blood flow. Chaturani P; Upadhya VS Biorheology; 1978; 15(3-4):193-201. PubMed ID: 737322 [No Abstract] [Full Text] [Related]
27. [Analysis of the function of the circulatory system and its components based on rheologic viewpoints]. Mikita J; Mátrai A; Bogár L Orv Hetil; 1989 Oct; 130(41):2187-8, 2191-4. PubMed ID: 2682436 [TBL] [Abstract][Full Text] [Related]
28. On the viscoelastic character of liver tissue: experiments and modelling of the linear behaviour. Liu Z; Bilston L Biorheology; 2000; 37(3):191-201. PubMed ID: 11026939 [TBL] [Abstract][Full Text] [Related]
29. The effect of steady flow on transient viscoelastic behavior of blood. Kaibara M; Fukada E Biorheology; 1981; 18(3-6):405-13. PubMed ID: 7326384 [No Abstract] [Full Text] [Related]
30. Rheological properties and blood flow behavior in tube flow and vascular networks. Gaehtgens P Monogr Atheroscler; 1990; 15():160-9. PubMed ID: 2404194 [TBL] [Abstract][Full Text] [Related]
31. [Branches of the vascular bed: a first approach using influence area]. Lefort M; Stoltz JF; Larcan A Biorheology; 1974 Jan; 11(1):79-86. PubMed ID: 4824530 [No Abstract] [Full Text] [Related]
32. On micropolar fluid model for blood flow through narrow tubes. Chaturani P; Upadhya VS Biorheology; 1979; 16(6):419-28. PubMed ID: 534765 [No Abstract] [Full Text] [Related]
33. Blood is thicker than water: haemorheology in clinical practice. Ernst E Br J Clin Pract; 1992; 46(2):85-7. PubMed ID: 1457315 [No Abstract] [Full Text] [Related]
34. A two-fluid model for blood flow through small diameter tubes. Chaturani P; Upadhya VS Biorheology; 1979; 16(1-2):109-118. PubMed ID: 476292 [No Abstract] [Full Text] [Related]
35. Estimation of the physiological mechanical conditioning in vascular tissue engineering by a predictive fluid-structure interaction approach. Tresoldi C; Bianchi E; Pellegata AF; Dubini G; Mantero S Comput Methods Biomech Biomed Engin; 2017 Aug; 20(10):1077-1088. PubMed ID: 28569086 [TBL] [Abstract][Full Text] [Related]
36. Flow of couple stress fluid through narrow tubes by sigma phenomenon and marginal zone theory with applications to blood flow and cardiovascular diseases. Chaturani P Biorheology; 1979; 16(6):377-86. PubMed ID: 534760 [No Abstract] [Full Text] [Related]
37. Generic theory of active polar gels: a paradigm for cytoskeletal dynamics. Kruse K; Joanny JF; Jülicher F; Prost J; Sekimoto K Eur Phys J E Soft Matter; 2005 Jan; 16(1):5-16. PubMed ID: 15688136 [TBL] [Abstract][Full Text] [Related]
38. Viscoelasticity and thixotropy of human blood. Stoltz JF; Lucius M Biorheology; 1981; 18(3-6):453-73. PubMed ID: 7326387 [No Abstract] [Full Text] [Related]
39. Memory functions as a tool for the description of tissue deformability. Mahrenholtz OH; Zimmerman RU Biorheology; 1984; 21(5):663-74. PubMed ID: 6518282 [TBL] [Abstract][Full Text] [Related]
40. Physiology-based model of cell viscoelasticity. Muñoz JJ; Albo S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012708. PubMed ID: 23944493 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]