These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 7373277)

  • 61. Steady-state catecholamine distribution in chromaffin granule preparations: a test of the pump-leak hypothesis of general anesthesia.
    Akeson MA; Deamer DW
    Biochemistry; 1989 Jun; 28(12):5120-7. PubMed ID: 2527561
    [TBL] [Abstract][Full Text] [Related]  

  • 62. pH modulation of large conductance potassium channel from adrenal chromaffin granules.
    Hordejuk R; Lobanov NA; Kicinska A; Szewczyk A; Dolowy K
    Mol Membr Biol; 2004; 21(5):307-13. PubMed ID: 15513738
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Proton pumps and chemiosmotic coupling as a generalized mechanism for neurotransmitter and hormone transport.
    Johnson RG
    Ann N Y Acad Sci; 1987; 493():162-77. PubMed ID: 2884918
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Participation of a transmembrane proton gradient in 5-hydroxytryptamine transport by platelet dense granules and dense-granule ghosts.
    Wilkins JA; Salganicoff L
    Biochem J; 1981 Jul; 198(1):113-23. PubMed ID: 6459780
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Inhibition of catecholamine transport into chromaffin granule ghosts isolated from bovine adrenal glands by phenytoin.
    Deupree JD; Downs DA; Laposky JE; Hitchcock JJ
    J Pharmacol Exp Ther; 1984 Jul; 230(1):171-4. PubMed ID: 6146705
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Potential-sensitive response mechanism of diS-C3-(5) in biological membranes.
    Cabrini G; Verkman AS
    J Membr Biol; 1986; 92(2):171-82. PubMed ID: 3761361
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Exocytotic exposure and retrieval of membrane antigens of chromaffin granules: quantitative evaluation of immunofluorescence on the surface of chromaffin cells.
    Patzak A; Böck G; Fischer-Colbrie R; Schauenstein K; Schmidt W; Lingg G; Winkler H
    J Cell Biol; 1984 May; 98(5):1817-24. PubMed ID: 6373784
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Regulation of the transmembrane potential of isolated chromaffin granules by ATP, ATP analogs, and external pH.
    Pollard HB; Zinder O; Hoffman PG; Nikodejevic O
    J Biol Chem; 1976 Aug; 251(15):4544-50. PubMed ID: 7561
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Mitochondrial membrane potential in lymphocytes as monitored by fluorescent cation diS-C3-(5).
    Gulyaeva NV; Konoshenko GI; Mokhova EN
    Membr Biochem; 1985; 6(1):19-32. PubMed ID: 4033446
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The electrochemical proton gradient in Mycoplasma cells.
    Benyoucef M; Rigaud JL; Leblanc G
    Eur J Biochem; 1981 Jan; 113(3):491-8. PubMed ID: 6260481
    [TBL] [Abstract][Full Text] [Related]  

  • 71. In vitro reconstitution of chromaffin granule-cytoskeleton interactions: ionic factors influencing the association of F-actin with purified chromaffin granule membranes.
    Fowler VM; Pollard HB
    J Cell Biochem; 1982; 18(3):295-311. PubMed ID: 7068784
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Bis-oxonol experiment on plasma membrane potentials of bovine adrenal chromaffin cells: depolarizing stimuli and their possible interaction.
    Kitayama S; Ohtsuki H; Morita K; Dohi T; Tsujimoto A
    Neurosci Lett; 1990 Aug; 116(3):275-9. PubMed ID: 2243605
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Relationship of the Donnan potential to the transmembrane pH gradient in tracheal apical membrane vesicles.
    Langridge-Smith JE; Dubinsky WP
    J Membr Biol; 1986; 94(3):197-204. PubMed ID: 3560202
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The chromaffin granule: a model system for the study of hormones and neurotransmitters.
    Phillips JH; Pryde JG
    Ann N Y Acad Sci; 1987; 493():27-42. PubMed ID: 3473963
    [No Abstract]   [Full Text] [Related]  

  • 75. Particle segregation in chromaffin granule membranes by forced physical contact.
    Schuler G; Plattner H; Aberer W; Winkler H
    Biochim Biophys Acta; 1978 Nov; 513(2):244-54. PubMed ID: 718893
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Measurement of delta pH and membrane potential in secretory vesicles isolated from bovine pituitary intermediate lobe.
    Loh YP; Tam WW; Russell JT
    J Biol Chem; 1984 Jul; 259(13):8238-45. PubMed ID: 6330104
    [TBL] [Abstract][Full Text] [Related]  

  • 77. 5-Methylphenazinium methylsulfate mediates cyclic electron flow and proton gradient dissipation in chromaffin-vesicle membranes.
    Harnadek GJ; Ries EA; Farhat A; Njus D
    J Biol Chem; 1990 Oct; 265(30):18135-41. PubMed ID: 2211689
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Assessment of membrane potential changes using the carbocyanine dye, diS-C3-(5): synchronous excitation spectroscopy studies.
    Plásek J; Hrouda V
    Eur Biophys J; 1991; 19(4):183-8. PubMed ID: 2029874
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The relation between dicarbocyanine dye fluorescence and the membrane potential of human red blood cells set at varying Donnan equilibria.
    Freedman JC; Hoffman JF
    J Gen Physiol; 1979 Aug; 74(2):187-212. PubMed ID: 39969
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Differential scanning calorimetry of chromaffin granule membranes.
    Bach D; Rosenheck K; Schneider AS
    Experientia; 1979 Jun; 35(6):750-1. PubMed ID: 467576
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.