These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 7374376)

  • 61. Dietary very long chain fatty acids directly influence the ratio of tetracosenoic (24:1) to tetracosanoic (24:0) acids of sphingomyelin in rat liver.
    Bettger WJ; Blackadar CB
    Lipids; 1997 Jan; 32(1):51-5. PubMed ID: 9075193
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Modulation of receptor-mediated gonadotropin action in rat testes by dietary fat.
    Sebokova E; Garg ML; Clandinin MT
    Am J Physiol; 1988 Jun; 254(6 Pt 1):E708-12. PubMed ID: 2897795
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Fatty acid composition of the testes of zinc-deficient rats: the effect of docosapentaenoic acid supplementation.
    Chanmugam P; Wheeler C; Hwang DH
    J Nutr; 1984 Nov; 114(11):2073-9. PubMed ID: 6491760
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Essential fatty acid status in zinc deficiency. Effect on lipid and fatty acid composition, desaturation activity and structure of microsomal membranes of rat liver and testes.
    Ayala S; Brenner RR
    Acta Physiol Lat Am; 1983; 33(3):193-204. PubMed ID: 6673505
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Prostaglandins in swine testes.
    Michael CM
    Lipids; 1973 Feb; 8(2):92-3. PubMed ID: 4710384
    [No Abstract]   [Full Text] [Related]  

  • 66. Fatty acid composition of rat hearts as influenced by age and dietary fatty acids.
    Szuhaj BF; McCarl RL
    Lipids; 1973 May; 8(5):241-5. PubMed ID: 4713372
    [No Abstract]   [Full Text] [Related]  

  • 67. Effect of dietary fat source on the apparent digestibility of fat and the composition of fecal lipids of the young pig.
    Hamilton RM; McDonald BE
    J Nutr; 1969 Jan; 97(1):33-41. PubMed ID: 5763443
    [No Abstract]   [Full Text] [Related]  

  • 68. Comparison of fluorescence characteristics of products of peroxidation of membrane phospholipids with those of products derived from reaction of malonaldehyde with glycine as a model of lipofuscin fluorescent substances.
    Shimasaki H; Hirai N; Ueta N
    J Biochem; 1988 Nov; 104(5):761-6. PubMed ID: 3235450
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Conjugated diene and trans fatty acids in a choline-devoid diet hepatocarcinogenic in the rat.
    Banni S; Evans RW; Salgo MG; Corongiu FP; Lombardi B
    Carcinogenesis; 1990 Nov; 11(11):2047-51. PubMed ID: 2225339
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [Effect of total starvation on the fatty acid content and makeup in the lipid fractions of the perirenal adipose tissue and of the adipose tissue of the appendices testis in rats].
    Tsyganov EP
    Vopr Pitan; 1973; 32(1):35-9. PubMed ID: 4780611
    [No Abstract]   [Full Text] [Related]  

  • 71. Positional distribution of fatty acids in liver lecithin of rats as a function of dietary linoleate or linolenate.
    Pudelkewicz C; Holman RT
    Biochim Biophys Acta; 1968 Mar; 152(2):340-5. PubMed ID: 5639263
    [No Abstract]   [Full Text] [Related]  

  • 72. Lipids of ocular tissues. 8. The effects of essential fatty acid deficiency on the phospholipids of the photoreceptor membranes of rat retina.
    Anderson RE; Maude MB
    Arch Biochem Biophys; 1972 Jul; 151(1):270-6. PubMed ID: 5044519
    [No Abstract]   [Full Text] [Related]  

  • 73. Isolation and characterization of cadmium-binding protein from rat testes.
    Singh K; Nath R; Chakravarti RN
    J Reprod Fertil; 1974 Feb; 36(2):257-65. PubMed ID: 4819309
    [No Abstract]   [Full Text] [Related]  

  • 74. Angiotensin II receptors in testes.
    Millan MA; Aguilera G
    Endocrinology; 1988 May; 122(5):1984-90. PubMed ID: 3359972
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Out-of-Phase Imaging after Optical Modulation (OPIOM) for Multiplexed Fluorescence Imaging Under Adverse Optical Conditions.
    Chouket R; Zhang R; Pellissier-Tanon A; Lemarchand A; Espagne A; Saux TL; Jullien L
    Methods Mol Biol; 2021; 2350():191-227. PubMed ID: 34331287
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Studies on peroxidized lipids. V. Formation and characterization of 1,4-dihydropyridine-3,5-dicarbaldehydes as model of fluorescent components in lipofuscin.
    Kikugawa K; Ido Y
    Lipids; 1984 Aug; 19(8):600-8. PubMed ID: 27520512
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Fluorescent substances derived from the reaction of 13-monohydroperoxylinoleic acid and methylamine.
    Kikugawa K; Watanabe S
    Lipids; 1988 Apr; 23(4):299-303. PubMed ID: 27520007
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Covalent binding of peroxidized linoleic acid to protein and amino acids as models for lipofuscin formation.
    Shimasaki H; Ueta N; Privett OS
    Lipids; 1982 Dec; 17(12):878-83. PubMed ID: 27519435
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Fluorescent pigments by covalent binding of lipid peroxidation by-products to protein and amino acids.
    Fukuzawa K; Kishikawa K; Tokumura A; Tsukatani H; Shibuya M
    Lipids; 1985 Dec; 20(12):854-61. PubMed ID: 4094516
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Role of oxygen free radicals in retinal damage associated with experimental uveitis.
    Rao NA
    Trans Am Ophthalmol Soc; 1990; 88():797-850. PubMed ID: 1965620
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.