These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 7374962)
1. Metal ion content of cholinergic synaptic vesicles isolated from the electric organ of Torpedo: effect of stimulation-induced transmitter release. Schmidt R; Zimmermann H; Whittaker VP Neuroscience; 1980; 5(3):625-38. PubMed ID: 7374962 [No Abstract] [Full Text] [Related]
2. Effect of electrical stimulation on the yield and composition of synaptic vesicles from the cholinergic synapses of the electric organ of Torpedo: a combined biochemical, electrophysiological and morphological study. Zimmermann H; Whittaker VP J Neurochem; 1974 Mar; 22(3):435-50. PubMed ID: 4829966 [No Abstract] [Full Text] [Related]
3. ATP-dependent calcium uptake by cholinergic synaptic vesicles isolated from Torpedo electric organ. Israƫl M; Manaranche R; Marsal J; Meunier FM; Morel N; Frachon P; Lesbats B J Membr Biol; 1980 May; 54(2):115-26. PubMed ID: 7401165 [TBL] [Abstract][Full Text] [Related]
4. Factors required for calcium dependent acetylcholine release from isolated torpedo synaptic vesicles. Michaelson DM; Pinchasi I; Sokolovsky M Biochem Biophys Res Commun; 1978 Feb; 80(3):547-52. PubMed ID: 204306 [No Abstract] [Full Text] [Related]
5. Evidence for heterogeneous pools of acetylcholine in isolated cholinergic synaptic vesicles. Dowdall MJ; Zimmermann H Brain Res; 1974 May; 71(1):160-6. PubMed ID: 4821416 [No Abstract] [Full Text] [Related]
6. The biochemistry of cholinergic synapses as exemplified by the electric organ of Torpedo. Whittaker VP; Zimmermann H; Dowdall MJ J Neural Transm; 1975; Suppl 12():39-60. PubMed ID: 51043 [No Abstract] [Full Text] [Related]
7. Bicarbonate and magnesium ion-ATP dependent stimulation of acetylcholine uptake by Torpedo electric organ synaptic vesicles. Koenigsberger R; Parsons SM Biochem Biophys Res Commun; 1980 May; 94(1):305-12. PubMed ID: 7387697 [No Abstract] [Full Text] [Related]
8. Different recovery rates of the electrophysiological, biochemical and morphological parameters in the cholinergic synapses of the Torpedo electric organ after stimulation. Zimmermann H; Whittaker VP J Neurochem; 1974 Jun; 22(6):1109-14. PubMed ID: 4851379 [No Abstract] [Full Text] [Related]
9. 5'-triphosphate recycles independently of acetylcholine in cholinergic synaptic vesicles. Zimmermann H; Bokor JT Neurosci Lett; 1979 Aug; 13(3):319-24. PubMed ID: 231226 [TBL] [Abstract][Full Text] [Related]
10. Isolation of synaptic vesicles from Narcine brasiliensis electric organ: some influences on release of vesicular acetylcholine and ATP. Boyne AF Brain Res; 1976 Sep; 114(3):481-91. PubMed ID: 953769 [TBL] [Abstract][Full Text] [Related]
11. Homocholine and acetylhomocholine: false transmitters in the cholinergic electromotor system of Torpedo. Luqmani YA; Sudlow G; Whittaker VP Neuroscience; 1980; 5(1):153-60. PubMed ID: 6102748 [No Abstract] [Full Text] [Related]
12. Turnover of adenine nucleotides in cholinergic synaptic vesicles of the Torpedo electric organ. Zimmermann H Neuroscience; 1978; 3(9):827-36. PubMed ID: 714254 [No Abstract] [Full Text] [Related]
13. Cholinergic nerve terminals contain ascorbic acid which induces Ca2+-dependent release of acetylcholine and ATP from isolated Torpedo synaptic vesicles. Pinchasi I; Michaelson DM; Sokolovsky M FEBS Lett; 1979 Dec; 108(1):189-92. PubMed ID: 520543 [No Abstract] [Full Text] [Related]
14. Phospholipid turnover in Torpedo marmorata electric organ during discharge in vivo. Bleasdale JE; Hawthorne JN; Widlund L; Heilbronn E Biochem J; 1976 Sep; 158(3):557-65. PubMed ID: 825114 [TBL] [Abstract][Full Text] [Related]
15. Ion exchange between agonists and inorganic ions at the acetylcholine receptor of Torpedo californica. Spivak CE; Taylor DB Mol Pharmacol; 1980 Nov; 18(3):413-20. PubMed ID: 7464806 [No Abstract] [Full Text] [Related]
16. Acetylcholine release from isolated synaptic vesicles related to ionic permeability changes: continuous detection with a chemiluminescent method. Diebler MF J Neurochem; 1982 Nov; 39(5):1405-11. PubMed ID: 6288874 [TBL] [Abstract][Full Text] [Related]
17. Separation of synaptic vesicles of different functional states from the cholinergic synapses of the Torpedo electric organ. Zimmermann H; Denston CR Neuroscience; 1977; 2(5):715-30. PubMed ID: 593552 [No Abstract] [Full Text] [Related]
18. Cholinergic vesicle specific proteoglycan: stability in isolated vesicles and in synaptosomes during induced transmitter release. Kuhn DM; Volknandt W; Stadler H; Zimmermann H J Neurochem; 1988 Jan; 50(1):11-6. PubMed ID: 3121784 [TBL] [Abstract][Full Text] [Related]
19. Effects of Pb2+ and Cd2+ on acetylcholine release and Ca2+ movements in synaptosomes and subcellular fractions from rat brain and Torpedo electric organ. Suszkiw J; Toth G; Murawsky M; Cooper GP Brain Res; 1984 Dec; 323(1):31-46. PubMed ID: 6525509 [TBL] [Abstract][Full Text] [Related]
20. ATP-stimulated Ca2+ transport into cholinergic Torpedo synaptic vesicles. Michaelson DM; Ophir I; Angel I J Neurochem; 1980 Jul; 35(1):116-24. PubMed ID: 6108987 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]