These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 7375549)

  • 1. Rapid eye movement stage of sleep participates in the generation of the nocturnal meal pattern in the rat.
    Elomaa E; Johansson GG
    Physiol Behav; 1980 Feb; 24(2):331-6. PubMed ID: 7375549
    [No Abstract]   [Full Text] [Related]  

  • 2. Effects of partial food restriction on nocturnal meal size and feeding speed are counteracted by concurrent REM sleep deprivation in the rat.
    Johansson GG; Elomaa E
    Behav Brain Res; 1986 Jun; 20(3):275-80. PubMed ID: 3741588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Daily rhythm of locomotor activity is abolished during rapid eye movement sleep deprivation in the rat.
    Elomaa E; Johansson GG
    Physiol Behav; 1980 Feb; 24(2):327-30. PubMed ID: 7375548
    [No Abstract]   [Full Text] [Related]  

  • 4. Arvicanthis ansorgei, a Novel Model for the Study of Sleep and Waking in Diurnal Rodents.
    Hubbard J; Ruppert E; Calvel L; Robin-Choteau L; Gropp CM; Allemann C; Reibel S; Sage-Ciocca D; Bourgin P
    Sleep; 2015 Jun; 38(6):979-88. PubMed ID: 25409107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of rapid eye movement sleep deprivation on the feeding behavior in the laboratory rat with a description of the cuff pedestal technique.
    Elomaa E
    Acta Physiol Scand Suppl; 1985; 545():1-35. PubMed ID: 3868293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of an eight-hour advance of the light-dark cycle on sleep-wake rhythm in the rat.
    Sei H; Kiuchi T; Chang HY; Morita Y
    Neurosci Lett; 1992 Mar; 137(2):161-4. PubMed ID: 1584456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decision-making to initiate voluntary movements in the rat is altered during deprivation of rapid eye movement sleep.
    Elomaa E; Johansson GG
    Neurosci Lett; 1986 Jan; 63(1):51-5. PubMed ID: 3951740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diurnal rhythms of sleep in the rat: augmentation of paradoxical sleep following alterations of the feeding schedule.
    Mouret JR; Bobillier P
    Int J Neurosci; 1971 Dec; 2(6):265-9. PubMed ID: 4347412
    [No Abstract]   [Full Text] [Related]  

  • 9. Control of sleep states in the rat by short light-dark cycles.
    Borbély AA; Huston JP; Waser PG
    Brain Res; 1975 Sep; 95(1):89-101. PubMed ID: 168939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-rapid-eye-movement sleep propensity after sleep deprivation in human subjects.
    Tagaya H; Uchiyama M; Shibui K; Kim K; Suzuki H; Kamei Y; Okawa M
    Neurosci Lett; 2002 Apr; 323(1):17-20. PubMed ID: 11911980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The light/dark difference in meal size in the laboratory rat on a standard diet is abolished during REM sleep deprivation.
    Elomaa E
    Physiol Behav; 1981 Mar; 26(3):487-93. PubMed ID: 7243964
    [No Abstract]   [Full Text] [Related]  

  • 12. EphA4 is Involved in Sleep Regulation but Not in the Electrophysiological Response to Sleep Deprivation.
    Freyburger M; Pierre A; Paquette G; Bélanger-Nelson E; Bedont J; Gaudreault PO; Drolet G; Laforest S; Blackshaw S; Cermakian N; Doucet G; Mongrain V
    Sleep; 2016 Mar; 39(3):613-24. PubMed ID: 26612390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sleep regulation in rats: effects of sleep deprivation, light, and circadian phase.
    Trachsel L; Tobler I; Borbély AA
    Am J Physiol; 1986 Dec; 251(6 Pt 2):R1037-44. PubMed ID: 3789191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sleep-wake patterns, non-rapid eye movement, and rapid eye movement sleep cycles in teenage narcolepsy.
    Xu X; Wu H; Zhuang J; Chen K; Huang B; Zhao Z; Zhao Z
    Sleep Med; 2017 May; 33():47-56. PubMed ID: 28449905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Persistence of the circadian rhythm of REM sleep: a variety of experimental manipulations of the sleep-wake cycle.
    Endo S; Kobayashi T; Yamamoto T; Fukuda H; Sasaki M; Ohta T
    Sleep; 1981 Sep; 4(3):319-28. PubMed ID: 7302463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased hypocretin-1 levels in cerebrospinal fluid after REM sleep deprivation.
    Pedrazzoli M; D'Almeida V; Martins PJ; Machado RB; Ling L; Nishino S; Tufik S; Mignot E
    Brain Res; 2004 Jan; 995(1):1-6. PubMed ID: 14644464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pattern of rapid-eye movement sleep episode occurrence after an immobilization stress in the rat.
    Dewasmes G; Loos N; Delanaud S; Dewasmes D; Ramadan W
    Neurosci Lett; 2004 Jan; 355(1-2):17-20. PubMed ID: 14729224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of eye movements abolishes light entrainment of circadian mesolimbic catecholamine excitability: a function for REM?
    Stevens JR; Livermore AA; Fellman J
    Life Sci; 1982 Feb; 30(6):495-501. PubMed ID: 7200184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variation of electroencephalographic activity during non-rapid eye movement and rapid eye movement sleep with phase of circadian melatonin rhythm in humans.
    Dijk DJ; Shanahan TL; Duffy JF; Ronda JM; Czeisler CA
    J Physiol; 1997 Dec; 505 ( Pt 3)(Pt 3):851-8. PubMed ID: 9457658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circadian rhythms and sleep have additive effects on respiration in the rat.
    Stephenson R; Liao KS; Hamrahi H; Horner RL
    J Physiol; 2001 Oct; 536(Pt 1):225-35. PubMed ID: 11579171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.