These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 7376905)

  • 21. DIDS inhibition of deformation-induced cation flux in human erythrocytes.
    Johnson RM; Tang K
    Biochim Biophys Acta; 1993 May; 1148(1):7-14. PubMed ID: 8499471
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bicarbonate/chloride antiport in Vero cells: II. Mechanisms for bicarbonate-dependent regulation of intracellular pH.
    Olsnes S; Ludt J; Tønnessen TI; Sandvig K
    J Cell Physiol; 1987 Aug; 132(2):192-202. PubMed ID: 3624315
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The interaction of human erythrocyte Band 3 with cytoskeletal components.
    Hsu L; Morrison M
    Arch Biochem Biophys; 1983 Nov; 227(1):31-8. PubMed ID: 6685459
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alterations of the Cl-/NaCO3- anion exchanger in erythrocytes of uraemic patients.
    Maduell F; Fernandez J; Díez J
    Nephrol Dial Transplant; 1990; 5(12):1018-22. PubMed ID: 1965735
    [TBL] [Abstract][Full Text] [Related]  

  • 25. p-Chloromercuribenzenesulfonic acid stimulation of chloride-dependent sodium and potassium transport in human red blood cells.
    Haas M; Schmidt WF
    Biochim Biophys Acta; 1985 Mar; 814(1):43-9. PubMed ID: 3978099
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of anion transport in the passive movement of lead across the human red cell membrane.
    Simons TJ
    J Physiol; 1986 Sep; 378():287-312. PubMed ID: 3025431
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cation specificity and modes of the Na+:CO3(2-):HCO3- cotransporter in renal basolateral membrane vesicles.
    Soleimani M; Lesoine GA; Bergman JA; Aronson PS
    J Biol Chem; 1991 May; 266(14):8706-10. PubMed ID: 2026588
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of ATP, intracellular calcium and the anion exchange inhibitor DIDS on conductive anion fluxes across the human red cell membrane.
    Bennekou P; Stampe P
    Biochim Biophys Acta; 1988 Jul; 942(1):179-85. PubMed ID: 2454663
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glycine transport by human red blood cells and ghosts: evidence for glycine anion and proton cotransport by band 3.
    King PA; Gunn RB
    Am J Physiol; 1991 Nov; 261(5 Pt 1):C814-21. PubMed ID: 1659210
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Natural variation in passive sodium permeability in human erythrocytes.
    Lee JY; Prineas RJ; Hallaway PE; Eaton JW
    Am J Hematol; 1987 Sep; 26(1):27-36. PubMed ID: 2820225
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Red cell anion channel blockade: extracellular modulation of internal membrane function.
    Eaton JW; Tsai MY; Leida MN; Branda R
    Prog Clin Biol Res; 1981; 55():409-22. PubMed ID: 6270695
    [No Abstract]   [Full Text] [Related]  

  • 32. Hemisodium, a novel selective Na ionophore. Effect on normal human erythrocytes.
    Kaji DM
    J Gen Physiol; 1992 Feb; 99(2):199-216. PubMed ID: 1613483
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DIDS-effect on Ser/Thr- and Tyr-phosphorylation of membrane proteins in human erythrocytes.
    Clari G; Bordin L; Moret V
    Biochem Int; 1992 May; 26(6):1065-72. PubMed ID: 1632802
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The anion transport protein of the red cell membrane. A zipper mechanism of anion exchange.
    Wieth JO; Bjerrum PJ; Brahm J; Andersen OS
    Tokai J Exp Clin Med; 1982; 7 Suppl():91-101. PubMed ID: 7186223
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein structure in relation to anion transport in red cells.
    Rothstein A; Ramjeesingh M; Grinstein S; Knauf PA
    Ann N Y Acad Sci; 1980; 341():433-43. PubMed ID: 6994547
    [No Abstract]   [Full Text] [Related]  

  • 36. Anion-dependent transport of thallous ions through human erythrocyte membrane.
    Skulskii IA; Gusev GP; Sherstobitov AO; Manninen V
    J Membr Biol; 1992 Dec; 130(3):219-25. PubMed ID: 1491427
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of staphylococcal alpha-hemolysin upon anion transport in the rabbit erythrocyte.
    Austin JW; Fackrell HB
    Biochim Biophys Acta; 1984 Jul; 774(2):247-53. PubMed ID: 6743657
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of the response of erythrocyte sodium-lithium countertransport to inhibitors.
    Rutherford PA; Thomas TH; Wilkinson R
    Biochem Med Metab Biol; 1993 Apr; 49(2):270-3. PubMed ID: 8484966
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transport and interactions of anions and protons in the red blood cell membrane.
    Wieth JO; Brahm J; Funder J
    Ann N Y Acad Sci; 1980; 341():394-418. PubMed ID: 6249153
    [No Abstract]   [Full Text] [Related]  

  • 40. Bicarbonate exchange kinetics at equilibrium across the erythrocyte membrane by 13C NMR.
    Chapman BE; Kirk K; Kuchel PW
    Biochem Biophys Res Commun; 1986 Apr; 136(1):266-72. PubMed ID: 3085667
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.