These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
71 related articles for article (PubMed ID: 7377380)
1. Irreversible thermodynamics of an isometric twitch, time-dependent general formulation. Moreno AH; Chiu HH; Steen JA; Reddy RV Am J Physiol; 1980 May; 238(5):R413-20. PubMed ID: 7377380 [TBL] [Abstract][Full Text] [Related]
2. An energetic model of muscle contraction. Chapman JB; Gibbs CL Biophys J; 1972 Mar; 12(3):227-36. PubMed ID: 4259475 [TBL] [Abstract][Full Text] [Related]
3. A phenomenological theory of muscular contraction. I. Rate equations at a given length based on irreversible thermodynamics. Bornhorst WJ; Minardi JE Biophys J; 1970 Feb; 10(2):137-54. PubMed ID: 5461140 [TBL] [Abstract][Full Text] [Related]
4. Mechano-mathematical model of excitation-contraction coupling in muscle tissue. Mihailova AP; Petrov NK Biorheology Suppl; 1984; 1():209-12. PubMed ID: 6591977 [TBL] [Abstract][Full Text] [Related]
5. Biomimetic model of skeletal muscle isometric contraction: II. A phenomenological model of the skeletal muscle excitation-contraction coupling process. Neidhard-Doll AT; Phillips CA; Repperger DW; Reynolds DB Comput Biol Med; 2004 Jun; 34(4):323-44. PubMed ID: 15121003 [TBL] [Abstract][Full Text] [Related]
6. A phenomenological theory of muscular contraction. II. Generalized length variations. Bornhorst WJ; Minardi JE Biophys J; 1970 Feb; 10(2):155-71. PubMed ID: 5414535 [TBL] [Abstract][Full Text] [Related]
8. Energetics of isometric and isotonic twitches in toad sartorius. Chapman JB; Gibbs CL Biophys J; 1972 Mar; 12(3):215-26. PubMed ID: 4622691 [TBL] [Abstract][Full Text] [Related]
9. From twitch to tetanus for human muscle: experimental data and model predictions for m. triceps surae. van Zandwijk JP; Bobbert MF; Harlaar J; Hof AL Biol Cybern; 1998 Aug; 79(2):121-30. PubMed ID: 9791932 [TBL] [Abstract][Full Text] [Related]
11. Influence of isoproterenol on contractile protein function, excitation-contraction coupling, and energy turnover of isolated nonfailing human myocardium. Hasenfuss G; Mulieri LA; Leavitt BJ; Alpert NR J Mol Cell Cardiol; 1994 Nov; 26(11):1461-9. PubMed ID: 7897670 [TBL] [Abstract][Full Text] [Related]
12. A physical model for muscular behavior. Apter JT; Graessley WW Biophys J; 1970 Jun; 10(6):539-55. PubMed ID: 5452353 [TBL] [Abstract][Full Text] [Related]
13. [Thermodynamics and muscle contraction. II. Consequences of the principle of maximization of the rate of entropy production]. Nikol'skiĭ SS Biofizika; 1975; 20(2):241-5. PubMed ID: 1148298 [TBL] [Abstract][Full Text] [Related]
14. ATP splitting by half the cross-bridges can explain the twitch energetics of mouse papillary muscle. Widén C; Barclay CJ J Physiol; 2006 May; 573(Pt 1):5-15. PubMed ID: 16497711 [TBL] [Abstract][Full Text] [Related]
15. Biomimetic model of skeletal muscle isometric contraction: I. an energetic-viscoelastic model for the skeletal muscle isometric force twitch. Phillips CA; Repperger DW; Neidhard-Doll AT; Reynolds DB Comput Biol Med; 2004 Jun; 34(4):307-22. PubMed ID: 15121002 [TBL] [Abstract][Full Text] [Related]
16. Dependence of energy output on force generation during muscle contraction. Rall JA Am J Physiol; 1978 Jul; 235(1):C20-4. PubMed ID: 307913 [TBL] [Abstract][Full Text] [Related]
17. Thermodynamics and bioenergetics. Demirel Y; Sandler SI Biophys Chem; 2002 Jun; 97(2-3):87-111. PubMed ID: 12050002 [TBL] [Abstract][Full Text] [Related]
18. A thermodynamic approach to the compromise between power and efficiency in muscle contraction. Santillán M; Angulo-Brown F J Theor Biol; 1997 Dec; 189(4):391-8. PubMed ID: 9446748 [TBL] [Abstract][Full Text] [Related]
19. The phenomenological model of muscle contraction with a controller to simulate the excitation-contraction (E-C) coupling. Tamura Y; Saito M; Ito A J Biomech; 2009 Feb; 42(3):400-3. PubMed ID: 19147146 [TBL] [Abstract][Full Text] [Related]