BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 7377646)

  • 21. Inhibitory effects of a dietary phytochemical 3,3'-diindolylmethane on the phenobarbital-induced hepatic CYP mRNA expression and CYP-catalyzed reactions in female rats.
    Parkin DR; Lu Y; Bliss RL; Malejka-Giganti D
    Food Chem Toxicol; 2008 Jul; 46(7):2451-8. PubMed ID: 18486294
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cytochromes P450: decision-making tools for personalized therapeutics.
    Murray M; Petrovic N
    Curr Opin Mol Ther; 2006 Dec; 8(6):480-6. PubMed ID: 17243482
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modulation of cytochrome P450 activities by 7,8-benzoflavone and its metabolites.
    Lee HS; Jin C; Park J; Kim DH
    Biochem Mol Biol Int; 1994 Oct; 34(3):483-91. PubMed ID: 7833826
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Peroxidases: a role in the metabolism and side effects of drugs.
    Tafazoli S; O'Brien PJ
    Drug Discov Today; 2005 May; 10(9):617-25. PubMed ID: 15894226
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detecting and characterizing reactive metabolites by liquid chromatography/tandem mass spectrometry.
    Ma S; Subramanian R
    J Mass Spectrom; 2006 Sep; 41(9):1121-39. PubMed ID: 16967439
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Active metabolites in toxicology: the role of cytochrome P-448 and flavoprotein oxidases.
    Parke DV; Ioannides C
    Arch Toxicol Suppl; 1984; 7():183-92. PubMed ID: 6595982
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Opposite behaviors of reactive metabolites of tienilic acid and its isomer toward liver proteins: use of specific anti-tienilic acid-protein adduct antibodies and the possible relationship with different hepatotoxic effects of the two compounds.
    Bonierbale E; Valadon P; Pons C; Desfosses B; Dansette PM; Mansuy D
    Chem Res Toxicol; 1999 Mar; 12(3):286-96. PubMed ID: 10077492
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reductase and oxygenase activities of semisynthetic flavocytochromes based on cytochrome P450 2B4.
    Shumyantseva VV; Uvarov VY; Byakova OE; Archakov AI
    Biochem Mol Biol Int; 1996 Apr; 38(4):829-38. PubMed ID: 8728113
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microsomal cytochrome P450 dependent oxidation of N-hydroxyguanidines, amidoximes, and ketoximes: mechanism of the oxidative cleavage of their C=N(OH) bond with formation of nitrogen oxides.
    Jousserandot A; Boucher JL; Henry Y; Niklaus B; Clement B; Mansuy D
    Biochemistry; 1998 Dec; 37(49):17179-91. PubMed ID: 9860831
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interaction of sulfaphenazole derivatives with human liver cytochromes P450 2C: molecular origin of the specific inhibitory effects of sulfaphenazole on CYP 2C9 and consequences for the substrate binding site topology of CYP 2C9.
    Mancy A; Dijols S; Poli S; Guengerich P; Mansuy D
    Biochemistry; 1996 Dec; 35(50):16205-12. PubMed ID: 8973193
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Elimination of major side effects due to ROS of therapeuticals through biotransformation control of the 57 cytochromes P450 isoenzymes.
    Wiseman A
    Med Hypotheses; 2005; 64(4):802-5. PubMed ID: 15694700
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [The role of drug metabolizing enzymes in the effect and side-effect of the drugs].
    Vereczkey L; Jemnitz K; Monostory K; Veres Z; Kóbori L
    Orv Hetil; 2005 May; 146(19):947-52. PubMed ID: 15969306
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Circadian rhythms in metabolism and susceptibility of drugs (author's transl)].
    Kato R; Muraki T
    Tanpakushitsu Kakusan Koso; 1982 Jan; 27(2):158-69. PubMed ID: 7041179
    [No Abstract]   [Full Text] [Related]  

  • 34. Discovering drugs through biological transformation: role of pharmacologically active metabolites in drug discovery.
    Fura A; Shu YZ; Zhu M; Hanson RL; Roongta V; Humphreys WG
    J Med Chem; 2004 Aug; 47(18):4339-51. PubMed ID: 15317447
    [No Abstract]   [Full Text] [Related]  

  • 35. Cytochrome P-450: the Japanese connection.
    Gelboin HV
    Jpn J Cancer Res; 1993 Feb; 84(2):inside front cover. PubMed ID: 8463126
    [No Abstract]   [Full Text] [Related]  

  • 36. Implications of the allosteric kinetics of cytochrome P450s.
    Atkins WM
    Drug Discov Today; 2004 Jun; 9(11):478-84. PubMed ID: 15149623
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of drug metabolising mutants of cytochrome P450 BM3 (CYP102A1) as biocatalysts for the generation of reactive metabolites.
    Damsten MC; van Vugt-Lussenburg BM; Zeldenthuis T; de Vlieger JS; Commandeur JN; Vermeulen NP
    Chem Biol Interact; 2008 Jan; 171(1):96-107. PubMed ID: 17996858
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Features of the metabolism of various drugs involving cytochrome P-450 isoenzymes].
    Filimonova AA; Ziganshin AU; Ziganshina LE
    Eksp Klin Farmakol; 2007; 70(3):69-77. PubMed ID: 17650639
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Induction of drug metabolism: species differences and toxicological relevance.
    Graham MJ; Lake BG
    Toxicology; 2008 Dec; 254(3):184-91. PubMed ID: 18824059
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cyclophosphamide modulates rat hepatic cytochrome P450 2C11 and steroid 5 alpha-reductase activity and messenger RNA levels through the combined action of acrolein and phosphoramide mustard.
    Chang TK; Waxman DJ
    Cancer Res; 1993 Jun; 53(11):2490-7. PubMed ID: 8495410
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.