These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Examination of Lactobacillus plantarum lactate metabolism side effects in relation to the modulation of aeration parameters. Quatravaux S; Remize F; Bryckaert E; Colavizza D; Guzzo J J Appl Microbiol; 2006 Oct; 101(4):903-12. PubMed ID: 16968302 [TBL] [Abstract][Full Text] [Related]
6. Sugar-glycerol cofermentations in lactobacilli: the fate of lactate. Veiga da Cunha M; Foster MA J Bacteriol; 1992 Feb; 174(3):1013-9. PubMed ID: 1732191 [TBL] [Abstract][Full Text] [Related]
7. Oxygen metabolism of catalase-negative and catalase-positive strains of Lactobacillus plantarum. Yousten AA; Johnson JL; Salin M J Bacteriol; 1975 Jul; 123(1):242-7. PubMed ID: 1141195 [TBL] [Abstract][Full Text] [Related]
8. Influence of oxygen on respiration and glucose catabolism by Treponema pallidum. Barbieri JT; Cox CD Infect Immun; 1981 Mar; 31(3):992-7. PubMed ID: 7014470 [TBL] [Abstract][Full Text] [Related]
9. Oxygen activation and defence against oxygen toxicity in a psychrophilic Bacteroidaceae. Bentzen G; Larsen H Arch Microbiol; 1989; 151(2):95-100. PubMed ID: 2719528 [TBL] [Abstract][Full Text] [Related]
10. Catabolic pathway for aerobic degradation of lactate by Actinomyces naeslundii. Takahashi N; Yamada T Oral Microbiol Immunol; 1996 Jun; 11(3):193-8. PubMed ID: 8941775 [TBL] [Abstract][Full Text] [Related]
11. Analysis of the respiratory chain in Ethanologenic Zymomonas mobilis with a cyanide-resistant bd-type ubiquinol oxidase as the only terminal oxidase and its possible physiological roles. Sootsuwan K; Lertwattanasakul N; Thanonkeo P; Matsushita K; Yamada M J Mol Microbiol Biotechnol; 2008; 14(4):163-75. PubMed ID: 18089934 [TBL] [Abstract][Full Text] [Related]
12. Increased production of hydrogen peroxide by Lactobacillus delbrueckii subsp. bulgaricus upon aeration: involvement of an NADH oxidase in oxidative stress. Marty-Teysset C; de la Torre F; Garel J Appl Environ Microbiol; 2000 Jan; 66(1):262-7. PubMed ID: 10618234 [TBL] [Abstract][Full Text] [Related]
13. Oxidation of NADH via an "external" pathway in skeletal-muscle mitochondria and its possible role in the repayment of lactacid oxygen debt. Szczesna-Kaczmarek A; Litwińska D; Popinigis J Int J Biochem; 1984; 16(12):1231-5. PubMed ID: 6530010 [TBL] [Abstract][Full Text] [Related]
15. Calcium-linked adjustment of myocardial metabolism to changing mechanical demands in the isolated rat heart. Rubányi G; Kovách AG Acta Physiol Acad Sci Hung; 1980; 55(4):335-43. PubMed ID: 7468250 [TBL] [Abstract][Full Text] [Related]
16. Hydrogen peroxide formation and iron ion oxidoreduction linked to NADH oxidation in radish plasmalemma vesicles. Vianello A; Zancani M; Macrí F Biochim Biophys Acta; 1990 Mar; 1023(1):19-24. PubMed ID: 2156562 [TBL] [Abstract][Full Text] [Related]
17. Mitochondrial hydrogen peroxide formation and the fumarate reductase of Hymenolepis diminuta. Fioravanti CF; Reisig JM J Parasitol; 1990 Aug; 76(4):457-63. PubMed ID: 2380854 [TBL] [Abstract][Full Text] [Related]
18. Oxygen metabolism of Streptococcus mutans: uptake of oxygen and release of superoxide and hydrogen peroxide. Thomas EL; Pera KA J Bacteriol; 1983 Jun; 154(3):1236-44. PubMed ID: 6304008 [TBL] [Abstract][Full Text] [Related]
20. The role of the cytoplasmic redox potential in the control of fatty acid synthesis from glucose, pyruvate and lactate in white adipose tissue. Halperin ML; Robinson BH Biochem J; 1970 Jan; 116(2):235-40. PubMed ID: 4313115 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]