These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 7378365)

  • 1. Peptide inhibitors of sickle hemoglobin aggregation: effect of hydrophobicity.
    Gorecki M; Votano JR; Rich A
    Biochemistry; 1980 Apr; 19(8):1564-8. PubMed ID: 7378365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sickle hemoglobin aggregation: a new class of inhibitors.
    Votano JR; Gorecki M; Rich A
    Science; 1977 Jun; 196(4295):1216-9. PubMed ID: 870976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of deoxyhemoglobin S polymerization by biaromatic peptides found to associate with the hemoglobin molecule at a preferred site.
    Votano JR; Rich A
    Biochemistry; 1985 Apr; 24(8):1966-70. PubMed ID: 4016094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding of cationic pentapeptides with modified side chain lengths to negatively charged lipid membranes: Complex interplay of electrostatic and hydrophobic interactions.
    Hoernke M; Schwieger C; Kerth A; Blume A
    Biochim Biophys Acta; 2012 Jul; 1818(7):1663-72. PubMed ID: 22433675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of sickle hemoglobin gelation by amino acids and related compounds.
    Noguchi CT; Schechter AN
    Biochemistry; 1978 Dec; 17(25):5455-9. PubMed ID: 728408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noncovalent inhibitors of sickle hemoglobin gelation: effects of tetrasubstituted ammonium salts.
    Mazhani L; Kim BC; Poillon WN
    Hemoglobin; 1984; 8(2):129-36. PubMed ID: 6469693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oligopeptides as potential antiaggregation agents for deoxyhemoglobin S.
    Kubota S; Yang JT
    Proc Natl Acad Sci U S A; 1977 Dec; 74(12):5431-4. PubMed ID: 271966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative assessment of the noncovalent inhibition of sickle hemoglobin gelation by phenyl derivatives and other known agents.
    Behe MJ; Englander WS
    Biochemistry; 1979 Sep; 18(19):4196-201. PubMed ID: 486417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of pH on instability and aggregation of sickle hemoglobin solutions.
    Manno M; San Biagio PL; Palma MU
    Proteins; 2004 Apr; 55(1):169-76. PubMed ID: 14997550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antigelling and antisickling bisphenyl oligopeptides and peptide analogues have similar structural features.
    Burley SK; Wang AH; Votano JR; Rich A
    Biochemistry; 1987 Aug; 26(16):5091-9. PubMed ID: 3663644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of axial fiber contact residues impact sickle hemoglobin polymerization by perturbing a network of coupled interactions.
    Banerjee S; Mirsamadi N; Anantharaman L; Sivaram MV; Gupta RB; Choudhury D; Roy RP
    Protein J; 2007 Oct; 26(7):445-55. PubMed ID: 17514412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sickle-cell hemoglobin: fall in osmotic pressure upon deoxygenation.
    Hargens AR; Bowie LJ; Lent D; Carreathers S; Peters RM; Hammel HT; Scholander PF
    Proc Natl Acad Sci U S A; 1980 Jul; 77(7):4310-2. PubMed ID: 6933482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic and computational studies on the binding of p53-derived peptides and peptidomimetic inhibitors to HDM2.
    Grässlin A; Amoreira C; Baldridge KK; Robinson JA
    Chembiochem; 2009 May; 10(8):1360-8. PubMed ID: 19408261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of isotope exchange based mass spectrometry to understand the mechanism of inhibition of sickle hemoglobin polymerization upon oxygenation.
    Das R; Mitra A; Bhat V; Mandal AK
    J Struct Biol; 2017 Jul; 199(1):76-83. PubMed ID: 28465180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. p-Aminobenzoylpolyglutamates with hydrophobic end groups. A new class of inhibitors of hemoglobin S polymerization.
    Benesch RE; Kwong S; Hudson BB; Krumdieck CL
    J Biol Chem; 1988 Jan; 263(1):69-71. PubMed ID: 2447077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hydrophobicity scale for the lipid bilayer barrier domain from peptide permeabilities: nonadditivities in residue contributions.
    Mayer PT; Xiang TX; Niemi R; Anderson BD
    Biochemistry; 2003 Feb; 42(6):1624-36. PubMed ID: 12578376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A proton nuclear magnetic resonance investigation of human hemoglobin A2. Implications on the intermolecular contacts in sickle hemoglobin fibers and on the Bohr effect of human normal adult hemoglobin.
    Russu IM; Lin AK; Ferro-Dosch S; Ho C
    Biochim Biophys Acta; 1984 Mar; 785(3):123-31. PubMed ID: 6704402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylglycerol bilayers.
    Liu F; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2004 Mar; 43(12):3679-87. PubMed ID: 15035638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Saturation transfer electron paramagnetic resonance detection of sickle hemoglobin aggregation during deoxygenation.
    Thiyagarajan P; Johnson ME
    Biophys J; 1983 Jun; 42(3):269-74. PubMed ID: 6307410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The NH2-terminal region of the beta chain of sickle hemoglobin. I. Synthesis and purification of oligopeptides.
    Eastlake A; Curd JG; Schechter AN
    J Biol Chem; 1976 Oct; 251(20):6426-30. PubMed ID: 977581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.