These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 7378365)

  • 21. Regioselective covalent modification of hemoglobin in search of antisickling agents.
    Park S; Hayes BL; Marankan F; Mulhearn DC; Wanna L; Mesecar AD; Santarsiero BD; Johnson ME; Venton DL
    J Med Chem; 2003 Mar; 46(6):936-53. PubMed ID: 12620071
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular insights of inhibition in sickle hemoglobin polymerization upon glutathionylation: hydrogen/deuterium exchange mass spectrometry and molecular dynamics simulation-based approach.
    Das R; Mitra A; Mitra G; Maity D; Bhat V; Pal D; Ross C; Kurpad AV; Mandal AK
    Biochem J; 2018 Jul; 475(13):2153-2166. PubMed ID: 29858275
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemical modifications that inhibit gelation of sickle hemoglobin.
    Benesch R; Benesch RE; Yung S
    Proc Natl Acad Sci U S A; 1974 Apr; 71(4):1504-5. PubMed ID: 4524653
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solvation thermodynamics of amino acid side chains on a short peptide backbone.
    Hajari T; van der Vegt NF
    J Chem Phys; 2015 Apr; 142(14):144502. PubMed ID: 25877585
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determination of intrinsic hydrophilicity/hydrophobicity of amino acid side chains in peptides in the absence of nearest-neighbor or conformational effects.
    Kovacs JM; Mant CT; Hodges RS
    Biopolymers; 2006; 84(3):283-97. PubMed ID: 16315143
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proton longitudinal relaxation investigation of histidyl residues of normal human adult and sickle deoxyhemoglobin: evidence for the existence of pregelation aggregates in sickle deoxyhemoglobin solutions.
    Russu IM; Ho C
    Proc Natl Acad Sci U S A; 1980 Nov; 77(11):6577-81. PubMed ID: 6256747
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lactam bridge stabilization of alpha-helices: the role of hydrophobicity in controlling dimeric versus monomeric alpha-helices.
    Houston ME; Campbell AP; Lix B; Kay CM; Sykes BD; Hodges RS
    Biochemistry; 1996 Aug; 35(31):10041-50. PubMed ID: 8756466
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The inhibitory effect of alkylureas and alkylamides on the gelation of hemoglobin S.
    Herskovits TT; Elbaum D
    Biochim Biophys Acta; 1980 Mar; 622(1):36-51. PubMed ID: 7362836
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enthalpies of ligand binding to bovine neurophysins.
    Whittaker BA; Allewell NM; Carlson J; Breslow E
    Biochemistry; 1985 May; 24(11):2782-90. PubMed ID: 4027226
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative analysis of the structure-hydrophobicity relationship for di- and tripeptides based on voltammetric measurements with an oil/water interface.
    Osakai T; Hirai T; Wakamiya T; Sawada S
    Phys Chem Chem Phys; 2006 Feb; 8(8):985-93. PubMed ID: 16482341
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural bases of the inhibitory effects of hemoglobin F and hemoglobin A2 on the polymerization of hemoglobin S.
    Nagel RL; Bookchin RM; Johnson J; Labie D; Wajcman H; Isaac-Sodeye WA; Honig GR; Schilirò G; Crookston JH; Matsutomo K
    Proc Natl Acad Sci U S A; 1979 Feb; 76(2):670-2. PubMed ID: 284392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physiological and x-ray studies of potential antisickling agents.
    Abraham DJ; Perutz MF; Phillips SE
    Proc Natl Acad Sci U S A; 1983 Jan; 80(2):324-8. PubMed ID: 6572894
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design and application of basic amino acids displaying enhanced hydrophobicity.
    Kretsinger JK; Schneider JP
    J Am Chem Soc; 2003 Jul; 125(26):7907-13. PubMed ID: 12823011
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determination of peptide hydrophobicity parameters by reversed-phase high-performance liquid chromatography.
    Rothemund S; Krause E; Ehrlich A; Bienert M; Glusa E; Verhallen P
    J Chromatogr A; 1994 Feb; 661(1-2):77-82. PubMed ID: 8136915
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Residue-dependent adsorption of model oligopeptides on gold.
    Fears KP; Clark TD; Petrovykh DY
    J Am Chem Soc; 2013 Oct; 135(40):15040-52. PubMed ID: 24079407
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Model peptides mimic the structure and function of the N-terminus of the pore-forming toxin sticholysin II.
    Casallanovo F; de Oliveira FJ; de Souza FC; Ros U; Martínez Y; Pentón D; Tejuca M; Martínez D; Pazos F; Pertinhez TA; Spisni A; Cilli EM; Lanio ME; Alvarez C; Schreier S
    Biopolymers; 2006; 84(2):169-80. PubMed ID: 16170802
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of Aptamers That Bind to Sickle Hemoglobin and Inhibit Its Polymerization.
    Purvis SH; Keefer JR; Fortenberry YM; Barron-Casella EA; Casella JF
    Nucleic Acid Ther; 2017 Dec; 27(6):354-364. PubMed ID: 29039727
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular dynamics simulations of a beta-hairpin fragment of protein G: balance between side-chain and backbone forces.
    Ma B; Nussinov R
    J Mol Biol; 2000 Mar; 296(4):1091-104. PubMed ID: 10686106
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Free energy of sickling: A simulation analysis.
    Kuczera K; Gao J; Tidor B; Karplus M
    Proc Natl Acad Sci U S A; 1990 Nov; 87(21):8481-5. PubMed ID: 2236057
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of T-R conformational change on sickle-cell hemoglobin interactions and aggregation.
    Vaiana SM; Rotter MA; Emanuele A; Ferrone FA; Palma-Vittorelli MB
    Proteins; 2005 Feb; 58(2):426-38. PubMed ID: 15573374
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.