BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 7378385)

  • 1. Laser Raman spectroscopic study of specifically deuterated phospholipid bilayers.
    Bansil R; Day J; Meadows M; Rice D; Oldfield E
    Biochemistry; 1980 Apr; 19(9):1938-43. PubMed ID: 7378385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman spectroscopy of selectively deuterated dimyristoylphosphatidylcholine: studies on dimyristoylphosphatidylcholine-cholesterol bilayers.
    O'Leary TJ; Levin IW
    Biochim Biophys Acta; 1986 Jan; 854(2):321-4. PubMed ID: 3942730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the transverse relaxation rates in lipid bilayers.
    Watnick PI; Dea P; Chan SI
    Proc Natl Acad Sci U S A; 1990 Mar; 87(6):2082-6. PubMed ID: 2315304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman scattering in protonated and deuterated 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC): Indicators of conformational and lateral orders.
    Zaytseva YV; Surovtsev NV
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Feb; 267(Pt 2):120583. PubMed ID: 34782267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of cholesterol on conformational disorder in dipalmitoylphosphatidylcholine bilayers. A quantitative IR study of the depth dependence.
    Davies MA; Schuster HF; Brauner JW; Mendelsohn R
    Biochemistry; 1990 May; 29(18):4368-73. PubMed ID: 2350543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibrational Raman spectra of lipid systems containing amphotericin B.
    Bunow MR; Levin IW
    Biochim Biophys Acta; 1977 Jan; 464(1):202-16. PubMed ID: 831791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic studies of specifically deuterium labeled membrane systems. Nuclear magnetic resonance investigation of the effects of cholesterol in model systems.
    Oldfield E; Meadows M; Rice D; Jacobs R
    Biochemistry; 1978 Jul; 17(14):2727-40. PubMed ID: 687560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-Dependent Hydrocarbon Chain Disorder in Phosphatidylcholine Bilayers Studied by Raman Spectroscopy.
    Dmitriev AA; Surovtsev NV
    J Phys Chem B; 2015 Dec; 119(51):15613-22. PubMed ID: 26608670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deuteron nuclear magnetic resonance study of the dynamic organization of phospholipid/cholesterol bilayer membranes: molecular properties and viscoelastic behavior.
    Weisz K; Gröbner G; Mayer C; Stohrer J; Kothe G
    Biochemistry; 1992 Feb; 31(4):1100-12. PubMed ID: 1734959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An infrared spectroscopic study of specifically deuterated fatty-acyl methyl groups in phosphatidylcholine liposomes.
    Castresana J; Valpuesta JM; Arrondo JL; Goñi FM
    Biochim Biophys Acta; 1991 May; 1065(1):29-34. PubMed ID: 1710496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Components of the carbonyl stretching band in the infrared spectra of hydrated 1,2-diacylglycerolipid bilayers: a reevaluation.
    Lewis RN; McElhaney RN; Pohle W; Mantsch HH
    Biophys J; 1994 Dec; 67(6):2367-75. PubMed ID: 7696476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrocarbon trans-gauche isomerization in phospholipid bilayer gel assemblies.
    Yellin N; Levin IW
    Biochemistry; 1977 Feb; 16(4):642-7. PubMed ID: 836805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman spectroscopic study of polycrystalline mono- and polyunsaturated 1-eicosanoyl-d(39)-2-eicosenoyl-sn-glycero-3-phosphocholines: bilayer lipid clustering and acyl chain order and disorder characteristics.
    McCarthy PK; Huang CH; Levin IW
    Biopolymers; 2000; 57(1):2-10. PubMed ID: 10679634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chain configuration and flexibility gradient in phospholipid membranes. Comparison between spin-label electron spin resonance and deuteron nuclear magnetic resonance, and identification of new conformations.
    Moser M; Marsh D; Meier P; Wassmer KH; Kothe G
    Biophys J; 1989 Jan; 55(1):111-23. PubMed ID: 2539207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A low-temperature structural phase transition of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine bilayers in the gel phase.
    Wong PT; Mantsch HH
    Biochim Biophys Acta; 1983 Jul; 732(1):92-8. PubMed ID: 6688187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron spin resonance study of phospholipid membranes employing a comprehensive line-shape model.
    Lange A; Marsh D; Wassmer KH; Meier P; Kothe G
    Biochemistry; 1985 Jul; 24(16):4383-92. PubMed ID: 2996596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of hydrostatic pressure on the molecular structure and endothermic phase transitions of phosphatidylcholine bilayers: a Raman scattering study.
    Wong PT; Mantsch HH
    Biochemistry; 1985 Jul; 24(15):4091-6. PubMed ID: 3840387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stages of the bilayer-micelle transition in the system phosphatidylcholine-C12E8 as studied by deuterium- and phosphorous-NMR, light scattering, and calorimetry.
    Otten D; Löbbecke L; Beyer K
    Biophys J; 1995 Feb; 68(2):584-97. PubMed ID: 7696511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman study of temperature-induced hydrocarbon chain disorder in saturated phosphatidylcholines.
    Zaytseva YV; Adichtchev SV; Surovtsev NV
    Chem Phys Lipids; 2020 Aug; 230():104926. PubMed ID: 32454008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct determination by Raman scattering of the conformation of the choline group in phospholipid bilayers.
    Akutsu H
    Biochemistry; 1981 Dec; 20(26):7359-66. PubMed ID: 7326231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.