These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 7380354)
1. Rate of oxygen consumption of hamster melanoma cells as a factor influencing their radioresistance. Pajak S; Subczyński W; Panz T; Lukiewicz S Folia Histochem Cytochem (Krakow); 1980; 18(1):33-9. PubMed ID: 7380354 [TBL] [Abstract][Full Text] [Related]
2. Detectability of radiation damage to melanoma cells using ESR spectroscopy. A review. Gurbiel R; Cieszka K; Pajak S; Subczyński W; Lukiewicz S Folia Histochem Cytochem (Krakow); 1980; 18(2):87-99. PubMed ID: 6256266 [TBL] [Abstract][Full Text] [Related]
3. Cytofluorimetric measurement of DNA content in the cells of the transplantable melanotic and amelanotic Bomirski melanoma in golden hamster (Mesocricetus auratus, Waterhouse). Gibas Z; Limon J; Zbytniewski Z Neoplasma; 1978; 25(1):31-6. PubMed ID: 634407 [TBL] [Abstract][Full Text] [Related]
4. Activity of antioxidant enzymes and concentrations of thiobarbituric acid reactive substances (TBARS) in melanotic and amelanotic Bomirski melanoma tissues in the golden hamster (Mesocricetus auratus, Waterhouse). Woźniak A; Drewa T; Drewa G; Woźniak B; Schachtschabel DO Neoplasma; 2002; 49(6):401-4. PubMed ID: 12584588 [TBL] [Abstract][Full Text] [Related]
5. [Radiation sensitivity of the amelanotic hamstermelanoma in vitro and in vivo (author's transl)]. Trott KR; Kummermehr J; Hug O; Lukacs S; Braun-Falco O Strahlentherapie; 1978 Aug; 154(8):571-7. PubMed ID: 684778 [TBL] [Abstract][Full Text] [Related]
6. Experimental ruthenium plaque therapy of amelanotic and melanotic melanomas in the hamster eye. Urbanska K; Romanowska-Dixon B; Elas M; Pajak S; Paziewski E; Bryk J; Kukielczak B; Slominski A; Zygulska-Mach H; Lukiewicz S Melanoma Res; 2000 Feb; 10(1):26-35. PubMed ID: 10711637 [TBL] [Abstract][Full Text] [Related]
7. [New technique for implanting Bomirski melanoma into the anterior chamber of Syrian hamster eyes]. Romanowska B; Kukiełczak B; Bryk J; Mirkiewicz-Sieradzka B; Heitzmann J; Lukiewicz S Klin Oczna; 1995; 97(11-12):324-7. PubMed ID: 8622289 [TBL] [Abstract][Full Text] [Related]
8. Changes of natural killer cytotoxic activity and natural killer sensitivity during growth of Bomirski melanotic (Ma) and amelanotic (Ab) melanomas. Myśliwski A; Bigda J; Myśliwska J; Witkowski JM; Sosnowska D Neoplasma; 1995; 42(1):15-9. PubMed ID: 7617068 [TBL] [Abstract][Full Text] [Related]
9. Indomethacin inhibits kidney metastasis in bomirski melanoma-bearing hamsters, and modulates natural killer cytotoxic activity of tumor hosts in vivo and in vitro. Bigda J; Mysliwski A Anticancer Res; 1998; 18(5A):3549-54. PubMed ID: 9858938 [TBL] [Abstract][Full Text] [Related]
10. Comparison of the antigenicity of melanotic and amelanotic melanoma cells after the release of surface glycoproteins by trypsin. Kozłowska K; Zurawska-Czupa B; Kostulak A Arch Immunol Ther Exp (Warsz); 1980; 28(4):641-4. PubMed ID: 7192976 [TBL] [Abstract][Full Text] [Related]
11. Concanavalin A induced agglutinability of the isolated cells of hamster melanotic and amelanotic melanomas. Kozłowska K; Zurawska-Czupa B; Bomirski A Arch Immunol Ther Exp (Warsz); 1980; 28(1):161-6. PubMed ID: 7416919 [TBL] [Abstract][Full Text] [Related]
12. Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Gorski DH; Beckett MA; Jaskowiak NT; Calvin DP; Mauceri HJ; Salloum RM; Seetharam S; Koons A; Hari DM; Kufe DW; Weichselbaum RR Cancer Res; 1999 Jul; 59(14):3374-8. PubMed ID: 10416597 [TBL] [Abstract][Full Text] [Related]
13. [Therapeutic experiments on the hamster melanoma (author's transl)]. Schuppli R Dermatologica; 1981; 163(1):71-7. PubMed ID: 7274518 [No Abstract] [Full Text] [Related]
14. Angiomorphology of the pigmented Bomirski melanoma growing in hamster eye. Romanowska-Dixon B; Urbanska K; Elas M; Pajak S; Zygulska-Mach H; Miodonski A Ann Anat; 2001 Nov; 183(6):559-65. PubMed ID: 11766529 [TBL] [Abstract][Full Text] [Related]
15. Melanoma development from subcellular fractions. Goldsmith HS; Stettiner L Surg Gynecol Obstet; 1979 Oct; 149(4):491-9. PubMed ID: 158228 [TBL] [Abstract][Full Text] [Related]
16. Estimation of macrophage IL-10 and NO secretion in the cytotoxicity against transplantable melanomas in relation to the progression of these tumours. Kozłowska K; Cichorek M; Zarzeczna M Folia Morphol (Warsz); 2002; 61(3):127-31. PubMed ID: 12416926 [TBL] [Abstract][Full Text] [Related]
17. The DNA ploidy and proliferative activity of transplantable melanoma cells in regard to their secretory function. Wachulska M; Kozłowska K; Cichorek M Neoplasma; 2005; 52(4):280-6. PubMed ID: 16059642 [TBL] [Abstract][Full Text] [Related]
18. [Effect of high LET radiation for radiation-resistant tumor, "melanoma"]. Kasuga T; Furuse K; Inada T; Takahashi I Gan No Rinsho; 1971 May; 17(5):380-5. PubMed ID: 4997177 [No Abstract] [Full Text] [Related]
19. Improvement of the tumor-suppressive effect of boron neutron capture therapy for amelanotic melanoma by intratumoral injection of the tyrosinase gene. Morita N; Hiratsuka J; Kondoh H; Uno M; Asano T; Niki Y; Sakurai Y; Ono K; Harada T; Imajo Y Cancer Res; 2006 Apr; 66(7):3747-53. PubMed ID: 16585201 [TBL] [Abstract][Full Text] [Related]
20. Magnetic transverse relaxation time of the protons in transplantable melanotic and amelanotic melanoma and in some inner organs of golden hamster Mesocricetus auratus, Waterhouse. Lewa CJ; Zbytniewski Z Bull Cancer; 1976; 63(1):69-72. PubMed ID: 990511 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]