These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 7380612)
1. Sporopollenin. A novel, naturally occurring support for solid phase peptide synthesis. Mackenzie G; Shaw G Int J Pept Protein Res; 1980 Mar; 15(3):298-300. PubMed ID: 7380612 [TBL] [Abstract][Full Text] [Related]
2. Immobilization of Candida rugosa lipase on sporopollenin from Lycopodium clavatum. Tutar H; Yilmaz E; Pehlivan E; Yilmaz M Int J Biol Macromol; 2009 Oct; 45(3):315-20. PubMed ID: 19583977 [TBL] [Abstract][Full Text] [Related]
3. New applications of sporopollenin as a solid phase support for peptide synthesis and the use of sonic agitation. Adamson R; Gregson S; Shaw G Int J Pept Protein Res; 1983 Nov; 22(5):560-4. PubMed ID: 6654603 [TBL] [Abstract][Full Text] [Related]
4. Demystifying and unravelling the molecular structure of the biopolymer sporopollenin. Mikhael A; Jurcic K; Schneider C; Karr D; Fisher GL; Fridgen TD; Diego-Taboada A; Georghiou PE; Mackenzie G; Banoub J Rapid Commun Mass Spectrom; 2020 May; 34(10):e8740. PubMed ID: 32003875 [TBL] [Abstract][Full Text] [Related]
9. Evolutionary stasis of sporopollenin biochemistry revealed by unaltered Pennsylvanian spores. Fraser WT; Scott AC; Forbes AES; Glasspool IJ; Plotnick RE; Kenig F; Lomax BH New Phytol; 2012 Oct; 196(2):397-401. PubMed ID: 22913758 [TBL] [Abstract][Full Text] [Related]
10. UV and visible light screening by individual sporopollenin exines derived from Lycopodium clavatum (club moss) and Ambrosia trifida (giant ragweed). Atkin SL; Barrier S; Cui Z; Fletcher PD; Mackenzie G; Panel V; Sol V; Zhang X J Photochem Photobiol B; 2011 Mar; 102(3):209-17. PubMed ID: 21232973 [TBL] [Abstract][Full Text] [Related]
11. Fundamentals of modern peptide synthesis. Amblard M; Fehrentz JA; Martinez J; Subra G Methods Mol Biol; 2005; 298():3-24. PubMed ID: 15897611 [TBL] [Abstract][Full Text] [Related]
12. The monitoring of reactions in solid-phase peptide synthesis with picric acid. Gisin BF Anal Chim Acta; 1972 Jan; 58(1):248-9. PubMed ID: 5057745 [No Abstract] [Full Text] [Related]
13. The molecular structure of plant sporopollenin. Li FS; Phyo P; Jacobowitz J; Hong M; Weng JK Nat Plants; 2019 Jan; 5(1):41-46. PubMed ID: 30559416 [TBL] [Abstract][Full Text] [Related]
14. UV-B absorbing compounds in present-day and fossil pollen, spores, cuticles, seed coats and wood: evaluation of a proxy for solar UV radiation. Rozema J; Blokker P; Mayoral Fuertes MA; Broekman R Photochem Photobiol Sci; 2009 Sep; 8(9):1233-43. PubMed ID: 19707612 [TBL] [Abstract][Full Text] [Related]
15. Novel biopolymers for drug discovery. Moran EJ; Wilson TE; Cho CY; Cherry SR; Schultz PG Biopolymers; 1995; 37(3):213-9. PubMed ID: 7718743 [TBL] [Abstract][Full Text] [Related]
16. Sorption of Cr(III) onto chelating b-DAEG-sporopollenin and CEP-sporopollenin resins. Gode F; Pehlivan E Bioresour Technol; 2007 Mar; 98(4):904-11. PubMed ID: 16635570 [TBL] [Abstract][Full Text] [Related]
17. Species-Specific Biodegradation of Sporopollenin-Based Microcapsules. Fan TF; Potroz MG; Tan EL; Ibrahim MS; Miyako E; Cho NJ Sci Rep; 2019 Jul; 9(1):9626. PubMed ID: 31270392 [TBL] [Abstract][Full Text] [Related]
19. Reaction rates for the production of selected hormones by solid-phase synthesis. Wang S; Foutch GL Biotechnol Prog; 1991; 7(2):111-5. PubMed ID: 1367166 [TBL] [Abstract][Full Text] [Related]
20. Sporopollenin based materials as a versatile choice for the detoxification of environmental pollutants - A review. Yaacob SFFS; Jamil RZR; Suah FBM Int J Biol Macromol; 2022 May; 207():990-1004. PubMed ID: 35381287 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]