These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 7381462)

  • 1. A method for controlling body wall turgor during electrophysiological recording from central neurons in ecdysing insects.
    Carlson JR
    J Neurobiol; 1980 Mar; 11(2):221-7. PubMed ID: 7381462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Load signals assist the generation of movement-dependent reflex reversal in the femur-tibia joint of stick insects.
    Akay T; Büschges A
    J Neurophysiol; 2006 Dec; 96(6):3532-7. PubMed ID: 16956989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multimodal sensory integration in insects--towards insect brain control architectures.
    Wessnitzer J; Webb B
    Bioinspir Biomim; 2006 Sep; 1(3):63-75. PubMed ID: 17671308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insect motor control: methodological advances, descending control and inter-leg coordination on the move.
    Borgmann A; Büschges A
    Curr Opin Neurobiol; 2015 Aug; 33():8-15. PubMed ID: 25579064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histaminergic neurons in the central and peripheral nervous system of gastropods (Helix, Lymnaea): an immunocytochemical, biochemical, and electrophysiological approach.
    Hegedus E; Kaslin J; Hiripi L; Kiss T; Panula P; Elekes K
    J Comp Neurol; 2004 Jul; 475(3):391-405. PubMed ID: 15221953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microneurography as a tool in clinical neurophysiology to investigate peripheral neural traffic in humans.
    Mano T; Iwase S; Toma S
    Clin Neurophysiol; 2006 Nov; 117(11):2357-84. PubMed ID: 16904937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behavioural evidence for parallel information processing in the visual system of insects.
    Zhang S; Srinivasan MV
    Jpn J Physiol; 1993; 43 Suppl 1():S247-58. PubMed ID: 8271505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurophysiological recordings in freely moving monkeys.
    Sun NL; Lei YL; Kim BH; Ryou JW; Ma YY; Wilson FA
    Methods; 2006 Mar; 38(3):202-9. PubMed ID: 16530628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A lamprey striatal brain slice preparation for patch-clamp recordings.
    Ericsson J; Robertson B; Wikström MA
    J Neurosci Methods; 2007 Sep; 165(2):251-6. PubMed ID: 17651809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular recording in behaving animals.
    Long MA; Lee AK
    Curr Opin Neurobiol; 2012 Feb; 22(1):34-44. PubMed ID: 22054814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method for determining neural connectivity and inferring the underlying network dynamics using extracellular spike recordings.
    Makarov VA; Panetsos F; de Feo O
    J Neurosci Methods; 2005 Jun; 144(2):265-79. PubMed ID: 15910987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method of extracellular recording of neuronal activity in swimming mice.
    Korshunov VA; Averkin RG
    J Neurosci Methods; 2007 Sep; 165(2):244-50. PubMed ID: 17669505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies.
    Peikon ID; Fitzsimmons NA; Lebedev MA; Nicolelis MA
    J Neurosci Methods; 2009 Jun; 180(2):224-33. PubMed ID: 19464514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarized skylight navigation in insects: model and electrophysiology of e-vector coding by neurons in the central complex.
    Sakura M; Lambrinos D; Labhart T
    J Neurophysiol; 2008 Feb; 99(2):667-82. PubMed ID: 18057112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organizing network action for locomotion: insights from studying insect walking.
    Büschges A; Akay T; Gabriel JP; Schmidt J
    Brain Res Rev; 2008 Jan; 57(1):162-71. PubMed ID: 17888515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A minimally invasive displacement sensor for measuring brain micromotion in 3D with nanometer scale resolution.
    Vähäsöyrinki M; Tuukkanen T; Sorvoja H; Pudas M
    J Neurosci Methods; 2009 Jun; 180(2):290-5. PubMed ID: 19379772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An optical telemetry system for underwater recording of electromyogram and neuronal activity from non-tethered crayfish.
    Tsuchida Y; Hama N; Takahata M
    J Neurosci Methods; 2004 Aug; 137(1):103-9. PubMed ID: 15196832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A housefly sensory-motor integration laboratory.
    Griff ER; Kane TC
    Adv Physiol Educ; 2010 Jun; 34(2):106-10. PubMed ID: 20522906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic spike detection based on adaptive template matching for extracellular neural recordings.
    Kim S; McNames J
    J Neurosci Methods; 2007 Sep; 165(2):165-74. PubMed ID: 17669507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive motor behavior in insects.
    Ritzmann RE; Büschges A
    Curr Opin Neurobiol; 2007 Dec; 17(6):629-36. PubMed ID: 18308559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.