BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 7381483)

  • 1. Inhibition by botulinum toxin of acetylcholine release from synaptosomes: latency of action and the role of gangliosides.
    Wonnacott S
    J Neurochem; 1980 Jun; 34(6):1567-73. PubMed ID: 7381483
    [No Abstract]   [Full Text] [Related]  

  • 2. Ca2+ uptake by synaptosomes and its effect on the inhibition of acetylcholine release by botulinum toxin.
    Wonnacott S; Marchbanks RM; Fiol C
    J Neurochem; 1978 May; 30(5):1127-34. PubMed ID: 351143
    [No Abstract]   [Full Text] [Related]  

  • 3. Inhibition by botulinum toxin of depolarization-evoked release of (14C)acetylcholine from synaptosomes in vitro.
    Wonnacott S; Marchbanks RM
    Biochem J; 1976 Jun; 156(3):701-12. PubMed ID: 949350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depolarisation-induced release of ATP from cortical synaptosomes is not associated with acetylcholine release.
    White T; Potter P; Wonnacott S
    J Neurochem; 1980 May; 34(5):1109-12. PubMed ID: 6246199
    [No Abstract]   [Full Text] [Related]  

  • 5. Characterization of the inhibitory action of botulinum neurotoxin type A on the release of several transmitters from rat cerebrocortical synaptosomes.
    Ashton AC; Dolly JO
    J Neurochem; 1988 Jun; 50(6):1808-16. PubMed ID: 2897427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Action of botulinum neurotoxin on acetylcholine release from rat brain synaptosomes: putative internalization of the toxin into synaptosomes.
    Murayama S; Umezawa J; Terajima J; Syuto B; Kubo S
    J Biochem; 1987 Dec; 102(6):1355-64. PubMed ID: 3129413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of botulinum toxin on acetylcholine metabolism in mouse brain slices and synaptosomes.
    Gundersen CB; Howard BD
    J Neurochem; 1978 Oct; 31(4):1005-13. PubMed ID: 702132
    [No Abstract]   [Full Text] [Related]  

  • 8. Tetanus toxin and botulinum A toxin inhibit acetylcholine release from but not calcium uptake into brain tissue.
    Bigalke H; Ahnert-Hilger G; Habermann E
    Naunyn Schmiedebergs Arch Pharmacol; 1981 Apr; 316(2):143-8. PubMed ID: 7242701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of ouabain on the release of [14C]acetylcholine and other substances from synaptosomes.
    Vyas S; Marchbanks RM
    J Neurochem; 1981 Dec; 37(6):1467-74. PubMed ID: 6278077
    [No Abstract]   [Full Text] [Related]  

  • 10. Reversal by local anaesthetics of ouabain-induced [14C]ACh and [14C]choline release from synaptosomes.
    Vyas S; Marchbanks RM
    Biochem Pharmacol; 1983 Sep; 32(18):2827-9. PubMed ID: 6313009
    [No Abstract]   [Full Text] [Related]  

  • 11. Gangliosides enhance KCl-induced Ca2+ influx and acetylcholine release in brain synaptosomes.
    Tanaka Y; Waki H; Kon K; Ando S
    Neuroreport; 1997 Jul; 8(9-10):2203-7. PubMed ID: 9243612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tetanus toxin blocks potassium-induced transmitter release and rearrangement of intramembrane particles at pure cholinergic synaptosomes.
    Egea G; Rabasseda X; Solsona C; Marsal J; Bizzini B
    Toxicon; 1990; 28(3):311-8. PubMed ID: 2343464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Botulinum toxin type A blocks the morphological changes induced by chemical stimulation on the presynaptic membrane of Torpedo synaptosomes.
    Marsal J; Egea G; Solsona C; Rabasseda X; Blasi J
    Proc Natl Acad Sci U S A; 1989 Jan; 86(1):372-6. PubMed ID: 2463625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of the constituent chains of botulinum neurotoxins A and B in the blockade of neurotransmitter release.
    Maisey EA; Wadsworth JD; Poulain B; Shone CC; Melling J; Gibbs P; Tauc L; Dolly JO
    Eur J Biochem; 1988 Nov; 177(3):683-91. PubMed ID: 3197726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Stabilization of ion homeostasis by gangliosides during exposure of the cerebral cortex synaptosomes to toxic concentrations of glutamate].
    Zakharova IO; Shestak KI; Leont'ev VG; Avrova NF
    Biull Eksp Biol Med; 2000 Jan; 129(1):45-7. PubMed ID: 10710626
    [No Abstract]   [Full Text] [Related]  

  • 16. High affinity choline uptake and acetylcholine release by guinea pig neocortex synaptosomes: inhibition by adenosine derivatives.
    Corrieri AG; Barberis C; Gayet J
    Biochem Pharmacol; 1981 Oct; 30(19):2732-4. PubMed ID: 7295357
    [No Abstract]   [Full Text] [Related]  

  • 17. Botulinum toxin A blocks glutamate exocytosis from guinea-pig cerebral cortical synaptosomes.
    Sanchez-Prieto J; Sihra TS; Evans D; Ashton A; Dolly JO; Nicholls DG
    Eur J Biochem; 1987 Jun; 165(3):675-81. PubMed ID: 2439334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct muscarinic receptor subtypes differentially modulate acetylcholine release from corticocerebral synaptosomes.
    Pittel Z; Heldman E; Rubinstein R; Cohen S
    J Neurochem; 1990 Aug; 55(2):665-72. PubMed ID: 1695243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relation of acetylcholine release to Ca2+ uptake and intraterminal Ca2+ concentration in guinea-pig cortex synaptosomes.
    Adam-Vizi V; Ashley RH
    J Neurochem; 1987 Oct; 49(4):1013-21. PubMed ID: 3625199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of sodium on depolarization-induced calcium uptake and acetylcholine release by synaptosomes.
    Metlas R; Nikezić G
    Biochim Biophys Acta; 1982 May; 687(2):340-2. PubMed ID: 7093264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.