These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 7381526)
1. Mechanisms responsible for changes observed in response properties of partially deafferented insect interneurons. Murphey RK; Levine RB J Neurophysiol; 1980 Feb; 43(2):367-82. PubMed ID: 7381526 [TBL] [Abstract][Full Text] [Related]
2. Deafferentation slows the growth of specific dendrites of identified giant interneurons. Murphey RK; Mendenhall B; Palka J; Edwards JS J Comp Neurol; 1975 Feb; 159(3):407-18. PubMed ID: 1112917 [TBL] [Abstract][Full Text] [Related]
3. Loss of inhibitory synaptic input to cricket sensory interneurons as a consequence of partial deafferentation. Levine RB; Murphey RK J Neurophysiol; 1980 Feb; 43(2):383-94. PubMed ID: 7381527 [TBL] [Abstract][Full Text] [Related]
4. Effect of auditory deafferentation on the synaptic connectivity of a pair of identified interneurons in adult field crickets. Brodfuehrer PD; Hoy RR J Neurobiol; 1988 Jan; 19(1):17-38. PubMed ID: 3346652 [TBL] [Abstract][Full Text] [Related]
5. Recovery from deafferentation by cricket interneurons after reinnervation by their peripheral field. Murphey RK; Matsumoto SG; Mendenhall B J Comp Neurol; 1976 Oct; 169(3):335-46. PubMed ID: 972203 [TBL] [Abstract][Full Text] [Related]
6. Afferent input regulates the formation of distal dendritic branches. Mizrahi A; Libersat F J Comp Neurol; 2002 Oct; 452(1):1-10. PubMed ID: 12205705 [TBL] [Abstract][Full Text] [Related]
7. Transplantation of cricket sensory neurons to ectopic locations: arborizations and synaptic connections. Murphey RK; Bacon JP; Sakaguchi DS; Johnson SE J Neurosci; 1983 Apr; 3(4):659-72. PubMed ID: 6834102 [TBL] [Abstract][Full Text] [Related]
8. Regeneration of normal afferent input does not eliminate aberrant synaptic connections of an identified auditory interneuron in the cricket, Teleogryllus oceanicus. Pallas SL; Hoy RR J Comp Neurol; 1986 Jun; 248(3):348-59. PubMed ID: 3722462 [TBL] [Abstract][Full Text] [Related]
9. Metabolic changes in deafferented central neurons of an insect, Acheta domesticus. I. Effects upon amino acid uptake and incorporation. Meyer MR; Edwards JS J Neurosci; 1982 Nov; 2(11):1651-9. PubMed ID: 7143044 [TBL] [Abstract][Full Text] [Related]
10. Localization of the enhanced input to cockroach giant interneurons after partial deafferentation. Volman SF J Neurobiol; 1989 Dec; 20(8):762-83. PubMed ID: 2584965 [TBL] [Abstract][Full Text] [Related]
11. Central connections of receptors on rotated and exchanged cerci of crickets. Palka J; Schubiger M Proc Natl Acad Sci U S A; 1975 Mar; 72(3):966-9. PubMed ID: 1055395 [TBL] [Abstract][Full Text] [Related]
13. Correlation between the receptive fields of locust interneurons, their dendritic morphology, and the central projections of mechanosensory neurons. Burrows M; Newland PL J Comp Neurol; 1993 Mar; 329(3):412-26. PubMed ID: 8459052 [TBL] [Abstract][Full Text] [Related]
14. Outputs of radula mechanoafferent neurons in Aplysia are modulated by motor neurons, interneurons, and sensory neurons. Rosen SC; Miller MW; Cropper EC; Kupfermann I J Neurophysiol; 2000 Mar; 83(3):1621-36. PubMed ID: 10712484 [TBL] [Abstract][Full Text] [Related]
15. Integration of nonphaselocked exteroceptive information in the control of rhythmic flight in the locust. Reichert H; Rowell CH J Neurophysiol; 1985 May; 53(5):1201-18. PubMed ID: 2987432 [TBL] [Abstract][Full Text] [Related]
16. Competition and the dynamics of axon arbor growth in the cricket. Murphey RK J Comp Neurol; 1986 Sep; 251(1):100-10. PubMed ID: 3760254 [TBL] [Abstract][Full Text] [Related]
17. Presynaptic inhibition in the crayfish CNS: pathways and synaptic mechanisms. Kirk MD J Neurophysiol; 1985 Nov; 54(5):1305-25. PubMed ID: 3001237 [TBL] [Abstract][Full Text] [Related]
18. Bilateral consequences of chronic unilateral deafferentation in the auditory system of the cricket Gryllus bimaculatus. Horch HW; Sheldon E; Cutting CC; Williams CR; Riker DM; Peckler HR; Sangal RB Dev Neurosci; 2011; 33(1):21-37. PubMed ID: 21346310 [TBL] [Abstract][Full Text] [Related]
19. Regeneration of an identified central neuron in the cricket. II. Electrical and morphological responses of the soma. Roederer E; Cohen MJ J Neurosci; 1983 Sep; 3(9):1848-59. PubMed ID: 6310065 [TBL] [Abstract][Full Text] [Related]
20. Sensory deprivation during development decreases the responsiveness of cricket giant interneurones. Matsumoto SG; Murphey RK J Physiol; 1977 Jun; 268(2):533-48. PubMed ID: 874920 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]