These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 7381757)

  • 1. Charge transfer effect through hydrogen bonding in caffeine-p-cresol and theophylline-p-cresol complexes.
    Borazan HN; Al-Ani NI
    J Pharm Sci; 1980 May; 69(5):613-5. PubMed ID: 7381757
    [No Abstract]   [Full Text] [Related]  

  • 2. Interactions of caffeine and theophylline with p-cresol: UV studies.
    Al-Ani NI; Borazan HN
    J Pharm Sci; 1978 Oct; 67(10):1381-4. PubMed ID: 702285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An infrared study of the interaction of caffeine and theophylline with 9-ethyladenine in chloroform solution.
    Ng S
    Mol Pharmacol; 1971 Mar; 7(2):177-82. PubMed ID: 5125852
    [No Abstract]   [Full Text] [Related]  

  • 4. Vibrational spectra of anhydrous and monohydrated caffeine and theophylline molecules and crystals.
    Balbuena PB; Blocker W; Dudek RM; Cabrales-Navarro FA; Hirunsit P
    J Phys Chem A; 2008 Oct; 112(41):10210-9. PubMed ID: 18816035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tyrosine Raman signatures of the filamentous virus Ff are diagnostic of non-hydrogen-bonded phenoxyls: demonstration by Raman and infrared spectroscopy of p-cresol vapor.
    Arp Z; Autrey D; Laane J; Overman SA; Thomas GJ
    Biochemistry; 2001 Feb; 40(8):2522-9. PubMed ID: 11327874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA binding efficacy of theophylline, theobromine and caffeine.
    Johnson IM; Kumar SG; Malathi R
    J Biomol Struct Dyn; 2003 Apr; 20(5):687-92. PubMed ID: 12643771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural studies on complexes. I. Postulation of polarization bonding in xanthine complexes.
    Shefter E
    J Pharm Sci; 1968 Feb; 57(2):350-1. PubMed ID: 5641691
    [No Abstract]   [Full Text] [Related]  

  • 8. Infrared vibrational spectra as a structural probe of gaseous ions formed by caffeine and theophylline.
    Marta RA; Wu R; Eldridge KR; Martens JK; McMahon TB
    Phys Chem Chem Phys; 2010 Apr; 12(14):3431-42. PubMed ID: 20336246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions of xanthine derivatives with bovine serum albumin. II. Spectrophotometric studies.
    Guttman DE; Gadzala AE
    J Pharm Sci; 1965 May; 54(5):742-6. PubMed ID: 5845888
    [No Abstract]   [Full Text] [Related]  

  • 10. Molecular-level understanding of ground- and excited-state O-H...O hydrogen bonding involving the tyrosine side chain: a combined high-resolution laser spectroscopy and quantum chemistry study.
    Biswal HS; Bhattacharyya S; Wategaonkar S
    Chemphyschem; 2013 Dec; 14(18):4165-76. PubMed ID: 24203576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can 4-chloro-m-cresol be substituted for caffeine as an activator of calcium oscillation in bullfrog sympathetic ganglion cells?
    Higure Y; Shimazaki Y; Nohmi M
    Cell Calcium; 2006 May; 39(5):467-70. PubMed ID: 16530265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Contribution to the study of paracetamol-theophylline and paracetamol-caffeine associations (author's transl)].
    Jeanjean B; Alberola S; Terol A; Sabon F
    Ann Pharm Fr; 1979; 37(3-4):95-100. PubMed ID: 507671
    [No Abstract]   [Full Text] [Related]  

  • 13. Crystalline anhydrous-hydrate phase changes of caffeine and theophylline in solvent-water mixtures.
    Bogardus JB
    J Pharm Sci; 1983 Jul; 72(7):837-8. PubMed ID: 6887001
    [No Abstract]   [Full Text] [Related]  

  • 14. Criteria for determining the hydrogen-bond structures of a tyrosine side chain by fourier transform infrared spectroscopy: density functional theory analyses of model hydrogen-bonded complexes of p-cresol.
    Takahashi R; Noguchi T
    J Phys Chem B; 2007 Dec; 111(49):13833-44. PubMed ID: 18020441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative determination of theophylline in pharmaceutical dosage forms by differential spectrophotometry.
    Chae YS; Shelver WH
    J Pharm Sci; 1976 Aug; 65(8):1178-81. PubMed ID: 978437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of 2,2-diphenyl-1-picrylhydrazyl and p-cresol on the oxidative degradation of indole-3-acetate.
    Miller RW; Parups EV
    Arch Biochem Biophys; 1971 Mar; 143(1):276-85. PubMed ID: 4327241
    [No Abstract]   [Full Text] [Related]  

  • 17. High-pressure liquid chromatographic assay of theophylline in biological fluids.
    Manion CV; Shoeman DW; Azarnoff DL
    J Chromatogr; 1974 Dec; 101(1):169-74. PubMed ID: 4443381
    [No Abstract]   [Full Text] [Related]  

  • 18. Interaction of aromatic compounds with xenon: spectroscopic and computational characterization for the cases of p-cresol and toluene.
    Cao Q; Andrijchenko N; Ermilov A; Räsänen M; Nemukhin A; Khriachtchev L
    J Phys Chem A; 2015 Mar; 119(11):2587-93. PubMed ID: 25360812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Mass spectrophotometric degradation of theophyllidine, caffeidine and the methylxanthines caffeine, theophylline and theobromine].
    Göber B; Kraft R
    Pharmazie; 1978 Nov; 33(11):717-20. PubMed ID: 751069
    [No Abstract]   [Full Text] [Related]  

  • 20. Interaction of copper ion with guanosine and related compounds.
    Tu AT; Friederich CG
    Biochemistry; 1968 Dec; 7(12):4367-72. PubMed ID: 5700660
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.