BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 7381927)

  • 1. Characterization of a potassium carrier in rabbit reticulocyte cell membrane.
    Panet R; Atlan H
    J Membr Biol; 1980; 52(3):273-80. PubMed ID: 7381927
    [No Abstract]   [Full Text] [Related]  

  • 2. The influence of the extracellular counter-ion on the sodium-dependent, ouabain-uninhibited sodium efflux from human erythrocytes.
    Dunn MJ; Grant R
    Biochim Biophys Acta; 1974 May; 352(1):117-21. PubMed ID: 4854899
    [No Abstract]   [Full Text] [Related]  

  • 3. [Furosemide-sensitive cation transport in frog skeletal muscle fibers].
    Vinogradova TA; Marakhova II
    Tsitologiia; 1988 Oct; 30(10):1200-7. PubMed ID: 2469239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mg2+-ATP-dependent sodium transport in inside-out basolateral plasma membrane vesicles from guinea-pig small intestinal epithelial cells.
    Del Castillo JR; Robinson JW
    Biochim Biophys Acta; 1985 Jan; 812(2):402-12. PubMed ID: 3967020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium-stimulated ATPase of guinea pig placenta.
    Shami Y; Radde IC
    Biochim Biophys Acta; 1971 Dec; 249(2):345-52. PubMed ID: 4257324
    [No Abstract]   [Full Text] [Related]  

  • 6. Energy depletion retards the loss of membrane transport during reticulocyte maturation.
    Weigensberg AM; Blostein R
    Proc Natl Acad Sci U S A; 1983 Aug; 80(16):4978-82. PubMed ID: 6576370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of Naplus-Kplus-stimulated ATPase in rabbit gall bladder epithelium.
    Van Os CH; Slegers JF
    Pflugers Arch; 1970; 319(1):49-56. PubMed ID: 4247395
    [No Abstract]   [Full Text] [Related]  

  • 8. Intracellular sodium, potassium and magnesium concentration, ouabain-sensitive 86rubidium-uptake and sodium-efflux and Na+, K+-cotransport activity in erythrocytes of normal male subjects studied on two occasions.
    Lijnen P; Hespel P; Lommelen G; Laermans M; M'Buyamba-Kabangu JR; Amery A
    Methods Find Exp Clin Pharmacol; 1986 Sep; 8(9):525-33. PubMed ID: 3773597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The properties of Na + -dependent and Na + -independent lysine uptake by isolated intestinal epithelial cells.
    Reiser S; Christiansen PA
    Biochim Biophys Acta; 1973 Apr; 307(1):212-22. PubMed ID: 4711188
    [No Abstract]   [Full Text] [Related]  

  • 10. Effects of ouabain, furosemide, ethacrynic acid and metabolic inhibitors on ion transport in dog submandibular gland in situ.
    Siegel IA
    Arch Int Pharmacodyn Ther; 1972 Dec; 200(2):281-91. PubMed ID: 4645870
    [No Abstract]   [Full Text] [Related]  

  • 11. Exchange transport and amino acid charge as the basis for Na + -independent lysine uptake by isolated intestinal epithelial cells.
    Reiser S; Christiansen PA
    Biochim Biophys Acta; 1973 Apr; 307(1):223-33. PubMed ID: 4711189
    [No Abstract]   [Full Text] [Related]  

  • 12. Inhibition of sodium- and potassium-dependent adenosine triphosphatase by ethacrynic acid: ligand-induced modifications.
    Banerjee SP; Khanna VK; Sen AK
    Biochem Pharmacol; 1971 Jul; 20(7):1649-60. PubMed ID: 4270365
    [No Abstract]   [Full Text] [Related]  

  • 13. Ouabain binding to (Na+ plus K+)-ATPase. Effects of nucleotide analogues and ethacrynic acid.
    Tobin T; Akera T; Lee CY; Brody TM
    Biochim Biophys Acta; 1974 Apr; 345(1):102-17. PubMed ID: 4275608
    [No Abstract]   [Full Text] [Related]  

  • 14. pH dependence of rubidium influx in human red blood cells.
    Beaugé LA; Adragna N
    Biochim Biophys Acta; 1974 Jun; 352(3):441-7. PubMed ID: 4841674
    [No Abstract]   [Full Text] [Related]  

  • 15. [Changes in the alkaline cation transport across the plasma membrane of CHO-K1 cell lines resistant to ethidium bromide].
    Marakhova II; Pospelova TV; Vereninov AA; Ignatova TN
    Tsitologiia; 1981 Apr; 23(4):410-8. PubMed ID: 7256844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of adenosine triphosphate by way of potassium-sensitive phosphoenzyme of sodium, potassium adenosine triphosphatase.
    Post RL; Toda G; Kume S; Taniguchi K
    J Supramol Struct; 1975; 3(5-6):479-97. PubMed ID: 54512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of K+ transport and metabolism of Escherichia coli by ethacrynic acid.
    Günther T; Dorn F; Haug M; Pellnitz W
    Naunyn Schmiedebergs Arch Pharmacol; 1974; 282(1):97-107. PubMed ID: 4275892
    [No Abstract]   [Full Text] [Related]  

  • 18. Red blood cell calcium and magnesium: effects upon sodium and potassium transport and cellular morphology.
    Dunn MJ
    Biochim Biophys Acta; 1974 May; 352(1):97-116. PubMed ID: 4854055
    [No Abstract]   [Full Text] [Related]  

  • 19. [On an alkaline RNase from ribosomes of rabbit reticulocytes: properties of the bound and free enzymes; influence of mono- and bivalent cations].
    Rosenthal S; Jagemann K; Prehn S; Heinemann G
    Acta Biol Med Ger; 1967; 18(3):329-50. PubMed ID: 5593399
    [No Abstract]   [Full Text] [Related]  

  • 20. Na+ modulates carrier-mediated Fe2+ transport through the erythroid cell membrane.
    Egyed A
    Biochem J; 1991 May; 275 ( Pt 3)(Pt 3):635-8. PubMed ID: 2039444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.