These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 7382452)

  • 1. Controlled destruction and temperature distributions in biological tissues subjected to monoactive electrocoagulation.
    Erez A; Shitzer A
    J Biomech Eng; 1980 Feb; 102(1):42-9. PubMed ID: 7382452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element analysis of hepatic radiofrequency ablation probes using temperature-dependent electrical conductivity.
    Chang I
    Biomed Eng Online; 2003 May; 2():12. PubMed ID: 12780939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of radiofrequency ablation process in liver tissue by finite element modeling and experiment.
    Barauskas R; Gulbinas A; Barauskas G
    Medicina (Kaunas); 2007; 43(4):310-25. PubMed ID: 17485959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite volume analysis of temperature effects induced by active MRI implants: 2. Defects on active MRI implants causing hot spots.
    Busch MH; Vollmann W; Grönemeyer DH
    Biomed Eng Online; 2006 May; 5():35. PubMed ID: 16729878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bio-heat transfer model of electroconvulsive therapy: Effect of biological properties on induced temperature variation.
    de Oliveira MM; Wen P; Ahfock T
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3997-4000. PubMed ID: 28269161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RF tumour ablation: computer simulation and mathematical modelling of the effects of electrical and thermal conductivity.
    Lobo SM; Liu ZJ; Yu NC; Humphries S; Ahmed M; Cosman ER; Lenkinski RE; Goldberg W; Goldberg SN
    Int J Hyperthermia; 2005 May; 21(3):199-213. PubMed ID: 16019848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A numerical study of rapid heating for high temperature radio frequency hyperthermia.
    Anderson G; Ye X; Henle K; Yang Z; Li G
    Int J Biomed Comput; 1994 May; 35(4):297-307. PubMed ID: 8063456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical estimations of temperature in a living tissue generated by laser irradiation using experimental data.
    Alzahrani FS; Abbas IA
    J Therm Biol; 2019 Oct; 85():102421. PubMed ID: 31657762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical analysis of the thermal effects during in vivo tissue electroporation.
    Davalos RV; Rubinsky B; Mir LM
    Bioelectrochemistry; 2003 Oct; 61(1-2):99-107. PubMed ID: 14642915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A finite element model for radiofrequency ablation of the myocardium.
    Shahidi AV; Savard P
    IEEE Trans Biomed Eng; 1994 Oct; 41(10):963-8. PubMed ID: 7959803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer modeling of factors that affect the minimum safety distance required for radiofrequency ablation near adjacent nontarget structures.
    Liu Z; Ahmed M; Gervais D; Humphries S; Goldberg SN
    J Vasc Interv Radiol; 2008 Jul; 19(7):1079-86. PubMed ID: 18589323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized thermomechanical interaction in two-dimensional skin tissue using eigenvalues approach.
    Abbas IA; El-Bary AA; Mohamed AOY
    J Therm Biol; 2024 Jan; 119():103777. PubMed ID: 38150888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the RF ablation-induced 'oven effect': the importance of background tissue thermal conductivity on tissue heating.
    Liu Z; Ahmed M; Weinstein Y; Yi M; Mahajan RL; Goldberg SN
    Int J Hyperthermia; 2006 Jun; 22(4):327-42. PubMed ID: 16754353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue responses to fractional transient heating with sinusoidal heat flux condition on skin surface.
    Ezzat MA; El-Bary AA; Al-Sowayan NS
    Anim Sci J; 2016 Oct; 87(10):1304-1311. PubMed ID: 26800333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical-thermal analytical modeling of monopolar RF thermal ablation of biological tissues: determining the circumstances under which tissue temperature reaches a steady state.
    Lopez Molina JA; Rivera MJ; Berjano E
    Math Biosci Eng; 2016 Apr; 13(2):281-301. PubMed ID: 27105984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical investigation of thermal response of laser-irradiated biological tissue phantoms embedded with gold nanoshells.
    Phadnis A; Kumar S; Srivastava A
    J Therm Biol; 2016 Oct; 61():16-28. PubMed ID: 27712656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A spherical source model for the thermal pulse decay method of measuring blood perfusion: a sensitivity analysis.
    Diederich CJ; Clegg S; Roemer RB
    J Biomech Eng; 1989 Feb; 111(1):55-61. PubMed ID: 2747234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioheat transfer problem for one-dimensional spherical biological tissues.
    Kengne E; Lakhssassi A
    Math Biosci; 2015 Nov; 269():1-9. PubMed ID: 26327484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of tissue temperature in monoactive electrocoagulation.
    Drabkin RL
    Biomed Eng (NY); 1973; 7(2):80-4. PubMed ID: 4746674
    [No Abstract]   [Full Text] [Related]  

  • 20. Computer modeling of the combined effects of perfusion, electrical conductivity, and thermal conductivity on tissue heating patterns in radiofrequency tumor ablation.
    Ahmed M; Liu Z; Humphries S; Goldberg SN
    Int J Hyperthermia; 2008 Nov; 24(7):577-88. PubMed ID: 18608580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.