These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

601 related articles for article (PubMed ID: 7382457)

  • 1. Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments.
    Mow VC; Kuei SC; Lai WM; Armstrong CG
    J Biomech Eng; 1980 Feb; 102(1):73-84. PubMed ID: 7382457
    [No Abstract]   [Full Text] [Related]  

  • 2. The biphasic poroviscoelastic behavior of articular cartilage: role of the surface zone in governing the compressive behavior.
    Setton LA; Zhu W; Mow VC
    J Biomech; 1993; 26(4-5):581-92. PubMed ID: 8478359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biphasic indentation of articular cartilage--II. A numerical algorithm and an experimental study.
    Mow VC; Gibbs MC; Lai WM; Zhu WB; Athanasiou KA
    J Biomech; 1989; 22(8-9):853-61. PubMed ID: 2613721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments.
    Ateshian GA; Warden WH; Kim JJ; Grelsamer RP; Mow VC
    J Biomech; 1997; 30(11-12):1157-64. PubMed ID: 9456384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element formulation of biphasic poroviscoelastic model for articular cartilage.
    Suh JK; Bai S
    J Biomech Eng; 1998 Apr; 120(2):195-201. PubMed ID: 10412380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic behavior of a biphasic cartilage model under cyclic compressive loading.
    Suh JK; Li Z; Woo SL
    J Biomech; 1995 Apr; 28(4):357-64. PubMed ID: 7738045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression.
    Soltz MA; Ateshian GA
    J Biomech; 1998 Oct; 31(10):927-34. PubMed ID: 9840758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model.
    Cao L; Youn I; Guilak F; Setton LA
    J Biomech Eng; 2006 Oct; 128(5):766-71. PubMed ID: 16995764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluid pressure driven fibril reinforcement in creep and relaxation tests of articular cartilage.
    Li LP; Korhonen RK; Iivarinen J; Jurvelin JS; Herzog W
    Med Eng Phys; 2008 Mar; 30(2):182-9. PubMed ID: 17524700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relaxation and creep quasilinear viscoelastic models for normal articular cartilage.
    Simon BR; Coats RS; Woo SL
    J Biomech Eng; 1984 May; 106(2):159-64. PubMed ID: 6738021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The apparent viscoelastic behavior of articular cartilage--the contributions from the intrinsic matrix viscoelasticity and interstitial fluid flows.
    Mak AF
    J Biomech Eng; 1986 May; 108(2):123-30. PubMed ID: 3724099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comment on 'The biphasic poroviscoelastic behavior of articular cartilage: role of the surface zone in governing the compressive behavior'.
    McCutchen CW
    J Biomech; 1995 Apr; 28(4):479, 481. PubMed ID: 7738058
    [No Abstract]   [Full Text] [Related]  

  • 13. Singular perturbation analysis of the nonlinear, flow-dependent compressive stress relaxation behavior of articular cartilage.
    Holmes MH; Lai WM; Mow VC
    J Biomech Eng; 1985 Aug; 107(3):206-18. PubMed ID: 4046561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of viscoelasticity of collagen fibers in articular cartilage: axial tension versus compression.
    Li LP; Herzog W; Korhonen RK; Jurvelin JS
    Med Eng Phys; 2005 Jan; 27(1):51-7. PubMed ID: 15604004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insight into deformation-dependent hydraulic permeability of gels and cartilage, and dynamic behavior of agarose gels in confined compression.
    Gu WY; Yao H; Huang CY; Cheung HS
    J Biomech; 2003 Apr; 36(4):593-8. PubMed ID: 12600349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of viscoelasticity of collagen fibers in articular cartilage: theory and numerical formulation.
    Li LP; Herzog W
    Biorheology; 2004; 41(3-4):181-94. PubMed ID: 15299251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poroviscoelastic finite element model including continuous fiber distribution for the simulation of nanoindentation tests on articular cartilage.
    Taffetani M; Griebel M; Gastaldi D; Klisch SM; Vena P
    J Mech Behav Biomed Mater; 2014 Apr; 32():17-30. PubMed ID: 24389384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasound speed in articular cartilage under mechanical compression.
    Nieminen HJ; Julkunen P; Töyräs J; Jurvelin JS
    Ultrasound Med Biol; 2007 Nov; 33(11):1755-66. PubMed ID: 17693012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poroelastic response of articular cartilage by nanoindentation creep tests at different characteristic lengths.
    Taffetani M; Gottardi R; Gastaldi D; Raiteri R; Vena P
    Med Eng Phys; 2014 Jul; 36(7):850-8. PubMed ID: 24814573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.