BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 7382831)

  • 21. Activity of phosphorylcreatine shuttle enzymes in rat cardiac, fast-, and slow-twitch skeletal muscles.
    Dowell RT
    Biochem Biophys Res Commun; 1982 Jan; 104(2):740-5. PubMed ID: 6462142
    [No Abstract]   [Full Text] [Related]  

  • 22. Age-dependent changes in cardiac muscle metabolism upon replacement of creatine by beta- guanidinopropionic acid.
    Field ML; Unitt JF; Radda GK; Henderson C; Seymour AM
    Biochem Soc Trans; 1991 Apr; 19(2):208S. PubMed ID: 1889584
    [No Abstract]   [Full Text] [Related]  

  • 23. Effect of a short-term dietary creatine supplementation on high-energy phosphates in the rat myocardium.
    Brzezińska Z; Nazar K; Kaciuba-Uściłko H; Falecka-Wieczorek I; Wójcik-Ziółkowska E
    J Physiol Pharmacol; 1998 Dec; 49(4):591-5. PubMed ID: 10069699
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Regulation problems in the energy metabolism of the myocardium].
    Nägle S
    Klin Wochenschr; 1970 Sep; 48(18):1075-89. PubMed ID: 4931196
    [No Abstract]   [Full Text] [Related]  

  • 25. Analysis of compartmentation of ATP in skeletal and cardiac muscle using 31P nuclear magnetic resonance saturation transfer.
    Zahler R; Bittl JA; Ingwall JS
    Biophys J; 1987 Jun; 51(6):883-93. PubMed ID: 3607210
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The kinetics of the creatine kinase reaction in neonatal rabbit heart: does the rate equation accurately describe the kinetics observed in the isolated perfused heart?
    McAuliffe JJ; Perry SB; Brooks EE; Ingwall JS
    Prog Clin Biol Res; 1989; 315():581-92. PubMed ID: 2798514
    [No Abstract]   [Full Text] [Related]  

  • 27. [Content of various high-energy phosphorus compounds and glycogen in the muscles under condition of altered thyroid gland function].
    Pawlik T
    Folia Med Cracov; 1978; 20(4):449-78. PubMed ID: 756853
    [No Abstract]   [Full Text] [Related]  

  • 28. Does muscle creatine phosphokinase have access to the total pool of phosphocreatine plus creatine?
    Hochachka PW; Mossey MK
    Am J Physiol; 1998 Mar; 274(3):R868-72. PubMed ID: 9530257
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of phosphocreatine in energy transport in skeletal muscle of bullfrog studied by 31P-NMR.
    Yoshizaki K; Watari H; Radda GK
    Biochim Biophys Acta; 1990 Feb; 1051(2):144-50. PubMed ID: 2310769
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Behavior of macroenergetic phosphorus compounds in the tissues in alloxan diabetes under the effect of insulin].
    Mach Z; Pawlik T
    Folia Med Cracov; 1975; 17(1):43-51. PubMed ID: 1140742
    [No Abstract]   [Full Text] [Related]  

  • 31. Uptake and phosphorylation of (14C) creatine by mouse cardiac muscle in vivo.
    Berlet HH
    Recent Adv Stud Cardiac Struct Metab; 1975; 7():183-92. PubMed ID: 1226433
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Starvation results in decreased initiation factor activity in rat skeletal muscle.
    Rannels DE; Pegg AE; Rannels SR
    Biochem Biophys Res Commun; 1976 Oct; 72(4):1481-9. PubMed ID: 999684
    [No Abstract]   [Full Text] [Related]  

  • 33. The creatine-creatine phosphate shuttle for energy transport-compartmentation of creatine phosphokinase in muscle.
    Erickson-Viitanen S; Geiger P; Yang WC; Bessman SP
    Adv Exp Med Biol; 1982; 151():115-25. PubMed ID: 6217725
    [No Abstract]   [Full Text] [Related]  

  • 34. [Dependence of creatine kinase and glycogen synthetase activities of skeletal muscles on state of adenine nucleotide phosphorylation and cAMP metabolism].
    Iakovlev NN; Chagovets NR; Maksimova LV
    Ukr Biokhim Zh (1978); 1980; 52(3):293-8. PubMed ID: 6247797
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The creatine-creatine phosphate energy shuttle.
    Bessman SP; Carpenter CL
    Annu Rev Biochem; 1985; 54():831-62. PubMed ID: 3896131
    [No Abstract]   [Full Text] [Related]  

  • 36. Correlations between cardiac protein synthesis rates, intracellular pH and the concentrations of creatine metabolites.
    Sugden PH; Fuller SJ
    Biochem J; 1991 Jan; 273(Pt 2)(Pt 2):339-46. PubMed ID: 1991035
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Progressive decrease of phosphocreatine, creatine and creatine kinase in skeletal muscle upon transformation to sarcoma.
    Patra S; Bera S; SinhaRoy S; Ghoshal S; Ray S; Basu A; Schlattner U; Wallimann T; Ray M
    FEBS J; 2008 Jun; 275(12):3236-47. PubMed ID: 18485002
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparison of in vivo catalysis by creatine kinase in avian skeletal muscles with different fibre composition.
    Smith MB; Briggs RW; Shoubridge EA; Hayes DJ; Radda GK
    Biochim Biophys Acta; 1985 Jul; 846(1):174-8. PubMed ID: 4016154
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Vitamins and creatine turnover. III. Modifications the creatine & phosphocreatine rate in skeletal & cardiac muscle of guinea pigs after ascorbic acid treatment].
    ALCOZER G; CERRUTI L
    Arch Maragliano Patol Clin; 1957 Aug; 13(4):813-22. PubMed ID: 13471196
    [No Abstract]   [Full Text] [Related]  

  • 40. Role of the phosphocreatine system on energetic homeostasis in skeletal and cardiac muscles.
    Guimarães-Ferreira L
    Einstein (Sao Paulo); 2014; 12(1):126-31. PubMed ID: 24728259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.