These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 7382899)

  • 1. Accelerated life testing of prosthetic heart valves.
    Fettel BE; Johnston DR; Morris PE
    Med Instrum; 1980; 14(3):161-4. PubMed ID: 7382899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Durability/wear testing of heart valve substitutes.
    Reul H; Potthast K
    J Heart Valve Dis; 1998 Mar; 7(2):151-7. PubMed ID: 9587854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Introduction of a flexible polymeric heart valve prosthesis with special design for aortic position.
    Daebritz SH; Fausten B; Hermanns B; Schroeder J; Groetzner J; Autschbach R; Messmer BJ; Sachweh JS
    Eur J Cardiothorac Surg; 2004 Jun; 25(6):946-52. PubMed ID: 15144993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tubular heart valves: a new tissue prosthesis design--preclinical evaluation of the 3F aortic bioprosthesis.
    Cox JL; Ad N; Myers K; Gharib M; Quijano RC
    J Thorac Cardiovasc Surg; 2005 Aug; 130(2):520-7. PubMed ID: 16077422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new design for polyurethane heart valves.
    Butterfield M; Wheatley DJ; Williams DF; Fisher J
    J Heart Valve Dis; 2001 Jan; 10(1):105-10. PubMed ID: 11206756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic characterization of a new accelerated heart valve tester.
    Menzler F; Haubold AD; Hwang NH
    ASAIO J; 1997; 43(5):M372-7. PubMed ID: 9360064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical cardiac valve prostheses: wear characteristics and magnitudes in three bileaflet valves.
    Elizondo DR; Boland ED; Ambrus JR; Kurk JL
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S115-23; discussion 144-8. PubMed ID: 8803764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cavitation behavior observed in three monoleaflet mechanical heart valves under accelerated testing conditions.
    Lo CW; Liu JS; Li CP; Lu PC; Hwang NH
    ASAIO J; 2008; 54(2):163-71. PubMed ID: 18356649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New flexible polymeric heart valve prostheses for the mitral and aortic positions.
    Daebritz SH; Fausten B; Hermanns B; Franke A; Schroeder J; Groetzner J; Autschbach R; Messmer BJ; Sachweh JS
    Heart Surg Forum; 2004; 7(5):E525-32. PubMed ID: 15799940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thrombogenic evaluation of two mechanical heart valve prostheses using a new in-vitro test system.
    Kim CH; Steinseifer U; Schmitz-Rode T
    J Heart Valve Dis; 2009 Mar; 18(2):207-13. PubMed ID: 19455896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic impact stress analysis of a bileaflet mechanical heart valve.
    Yuan Q; Xu L; Ngoi BK; Yeo TJ; Hwang NH
    J Heart Valve Dis; 2003 Jan; 12(1):102-9. PubMed ID: 12578344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural integrity assessment of heart valve prostheses: a damage tolerance analysis of the CarboMedics Prosthetic Heart Valve.
    Ryder JK; Cao H
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S86-96. PubMed ID: 8803760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow in prosthetic heart valves: state-of-the-art and future directions.
    Yoganathan AP; Chandran KB; Sotiropoulos F
    Ann Biomed Eng; 2005 Dec; 33(12):1689-94. PubMed ID: 16389514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A statistical approach to the quantitative comparison of pulsatile flow in vitro data of prosthetic heart valve testing.
    Barbaro V; Grigioni M; Daniele C; Boccanera G
    J Heart Valve Dis; 1997 Jan; 6(1):93-100. PubMed ID: 9044088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of prosthetic valve hydrodynamic function: objective testing using statistical multilevel modeling.
    Bernacca GM; McColl JH; Wheatley DJ
    J Heart Valve Dis; 2004 May; 13(3):467-77. PubMed ID: 15222295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical performance of pyrolytic carbon in prosthetic heart valve applications.
    Cao H
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S32-49. PubMed ID: 8794031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early wear development in a novel mechanical heart valve prosthesis made from polymeric materials.
    Medart D; Steinseifer U; Reul H; Schmitz-Rode T
    J Heart Valve Dis; 2006 Sep; 15(5):710-5. PubMed ID: 17044379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early wear development in a novel mechanical heart valve prosthesis made from polymeric materials.
    Medart D; Steinseifer U; Reul H; Schmitz-Rode T
    J Heart Valve Dis; 2006 Jul; 15(4):557-62. PubMed ID: 16901054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiac valve replacement: a bioengineering approach.
    Korossis SA; Fisher J; Ingham E
    Biomed Mater Eng; 2000; 10(2):83-124. PubMed ID: 11086842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of the cavitation potential of prosthetic heart valves based on valve closing dynamics.
    Zapanta CM; Stinebring DR; Deutsch S; Geselowitz DB; Tarbell JM
    J Heart Valve Dis; 1998 Nov; 7(6):655-67. PubMed ID: 9870200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.