These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 7382917)

  • 1. Investigation of cables for ionization chambers.
    Spokas JJ; Meeker RD
    Med Phys; 1980; 7(2):135-40. PubMed ID: 7382917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of triaxial cables and microdetectors in small field dosimetry.
    Sohn JJ; Das IJ
    Biomed Phys Eng Express; 2024 May; 10(4):. PubMed ID: 38768575
    [No Abstract]   [Full Text] [Related]  

  • 3. Induced effects in ionization chamber cables by photon and electron irradiation.
    Campos LL; Caldas LV
    Med Phys; 1991; 18(3):522-6. PubMed ID: 1870495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lightweight, Flexible, High-Performance Carbon Nanotube Cables Made by Scalable Flow Coating.
    Mirri F; Orloff ND; Forster AM; Ashkar R; Headrick RJ; Bengio EA; Long CJ; Choi A; Luo Y; Walker AR; Butler P; Migler KB; Pasquali M
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4903-10. PubMed ID: 26791337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noise from implantable Cooper cable.
    Carrington V; Zhou L; Donaldson N
    Med Biol Eng Comput; 2005 Sep; 43(5):618-21. PubMed ID: 16411634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comments on "Induced effects in ionization chamber cables by photon and electron irradiation".
    McLean D
    Med Phys; 1992; 19(2):363-5. PubMed ID: 1584133
    [No Abstract]   [Full Text] [Related]  

  • 7. High-performance, lightweight coaxial cable from carbon nanotube conductors.
    Jarosz PR; Shaukat A; Schauerman CM; Cress CD; Kladitis PE; Ridgley RD; Landi BJ
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):1103-9. PubMed ID: 22272936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of small volume ionization chambers as reference dosimeters in high-energy photon beams.
    Le Roy M; de Carlan L; Delaunay F; Donois M; Fournier P; Ostrowsky A; Vouillaume A; Bordy JM
    Phys Med Biol; 2011 Sep; 56(17):5637-50. PubMed ID: 21828908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of resonant RF heating in intravascular catheters using coaxial chokes.
    Ladd ME; Quick HH
    Magn Reson Med; 2000 Apr; 43(4):615-9. PubMed ID: 10748440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarity effect for various ionization chambers with multiple irradiation conditions in electron beams.
    Aget H; Rosenwald JC
    Med Phys; 1991; 18(1):67-72. PubMed ID: 2008173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the property of measurements with the PTW microLion chamber in continuous beams.
    Andersson J; Johansson E; Tölli H
    Med Phys; 2012 Aug; 39(8):4775-87. PubMed ID: 22894402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Technical Note: Influence of Compton currents on profile measurements in small-volume ion chambers.
    Tanny S; Holmes S; Sperling N; Parsai EI
    Med Phys; 2015 Oct; 42(10):5768-72. PubMed ID: 26429250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal noise due to surface-charge effects within the Debye layer of endogenous structures in dendrites.
    Poznanski RR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021902. PubMed ID: 20365590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation on Stray-Capacitance Influences of Coaxial Cables in Capacitive Transducers for a Space Inertial Sensor.
    Yu J; Wang C; Wang Y; Bai Y; Hu M; Li K; Li Z; Qu S; Wu S; Zhou Z
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32517190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stem corrections for ionization chambers.
    Ibbott GS; Barnes JE; Hall GR; Hendee WR
    Med Phys; 1975; 2(6):328-30. PubMed ID: 1196264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased range of ultrasonic guided wave testing of overhead transmission line cables using dispersion compensation.
    Legg M; Yücel MK; Kappatos V; Selcuk C; Gan TH
    Ultrasonics; 2015 Sep; 62():35-45. PubMed ID: 25991388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy-dependent polarity correction factors for four commercial ionization chambers used in electron dosimetry.
    Williams JA; Agarwal SK
    Med Phys; 1997 May; 24(5):785-90. PubMed ID: 9167172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Currents induced in the dielectrics of fonization chambers through the action of highenergy radiation.
    JOHNS HE; ASPIN N; BAKER RG
    Radiat Res; 1958 Dec; 9(6):573-88. PubMed ID: 13614645
    [No Abstract]   [Full Text] [Related]  

  • 19. Radiation induced currents in parallel plate ionization chambers: measurement and Monte Carlo simulation for megavoltage photon and electron beams.
    Abdel-Rahman W; Seuntjens JP; Verhaegen F; Podgorsak EB
    Med Phys; 2006 Sep; 33(9):3094-104. PubMed ID: 17022201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Static and Dynamic Characteristics of a Long-Span Cable-Stayed Bridge with CFRP Cables.
    Xie X; Li X; Shen Y
    Materials (Basel); 2014 Jun; 7(6):4854-4877. PubMed ID: 28788710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.