These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 7386625)

  • 1. Hydrogen transport in rabbit kidney proximal tubules--Na:H exchange.
    Bichara M; Paillard M; Leviel F; Gardin JP
    Am J Physiol; 1980 Jun; 238(6):F445-51. PubMed ID: 7386625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na+-dependent H+ efflux from proximal tubule: evidence for reversible Na+-H+ exchange.
    Schwartz GJ
    Am J Physiol; 1981 Oct; 241(4):F380-5. PubMed ID: 7315962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen transport in papillary collecting duct of rabbit kidney.
    Prigent A; Bichara M; Paillard M
    Am J Physiol; 1985 Mar; 248(3 Pt 1):C241-6. PubMed ID: 2579570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Na:H exchange and the primary H pump in the proximal tubule.
    Bichara M; Paillard M; Leviel F; Prigent A; Gardin JP
    Am J Physiol; 1983 Feb; 244(2):F165-71. PubMed ID: 6401934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of luminal pH and HCO3- on phosphate reabsorption in the rabbit proximal convoluted tubule.
    Hamm LL; Kokko JP; Jacobson HR
    Am J Physiol; 1984 Jul; 247(1 Pt 2):F25-34. PubMed ID: 6331202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parathyroid hormone and dibutyryl cAMP inhibit Na+/H+ exchange in renal brush border vesicles.
    Kahn AM; Dolson GM; Hise MK; Bennett SC; Weinman EJ
    Am J Physiol; 1985 Feb; 248(2 Pt 2):F212-8. PubMed ID: 2982285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling between proximal tubular transport processes. Studies with ouabain, SITS and HCO3-free solutions.
    Ullrich KJ; Capasso G; Rumrich G; Papavassiliou F; Klöss S
    Pflugers Arch; 1977 Apr; 368(3):245-52. PubMed ID: 141035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of principal cell pH by Na/H exchange in rabbit cortical collecting tubule.
    Silver RB; Frindt G; Palmer LG
    J Membr Biol; 1992 Jan; 125(1):13-24. PubMed ID: 1311767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of in vitro metabolic acidosis on luminal Na+/H+ exchange and basolateral Na+:HCO3- cotransport in rabbit kidney proximal tubules.
    Soleimani M; Bizal GL; McKinney TD; Hattabaugh YJ
    J Clin Invest; 1992 Jul; 90(1):211-8. PubMed ID: 1321842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular pH regulation in rabbit S3 proximal tubule: basolateral Cl-HCO3 exchange and Na-HCO3 cotransport.
    Nakhoul NL; Chen LK; Boron WF
    Am J Physiol; 1990 Feb; 258(2 Pt 2):F371-81. PubMed ID: 2155541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling of Na-H exchange and Na-K pump activity in cultured rat proximal tubule cells.
    Harris RC; Seifter JL; Lechene C
    Am J Physiol; 1986 Nov; 251(5 Pt 1):C815-24. PubMed ID: 2430465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular pH regulates Na(+)-independent Cl(-)-base exchange in JTC-12 (proximal tubule) cells.
    Fineman I; Hart D; Nord EP
    Am J Physiol; 1990 Apr; 258(4 Pt 2):F883-92. PubMed ID: 2158745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen ion permeability of the rabbit proximal convoluted tubule.
    Hamm LL; Pucacco LR; Kokko JP; Jacobson HR
    Am J Physiol; 1984 Jan; 246(1 Pt 2):F3-11. PubMed ID: 6696075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conductive Na+ transport in an epithelial cell line (LLC-PK1) with characteristics of proximal tubular cells.
    Cantiello HF; Scott JA; Rabito CA
    Am J Physiol; 1987 Apr; 252(4 Pt 2):F590-7. PubMed ID: 3031998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH gradient-dependent increased Na+-H+ antiport capacity of the rabbit remnant kidney.
    Nord EP; Hafezi A; Kaunitz JD; Trizna W; Fine LG
    Am J Physiol; 1985 Jul; 249(1 Pt 2):F90-8. PubMed ID: 2409819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A pH modifier site regulates activity of the Na+:HCO3- cotransporter in basolateral membranes of kidney proximal tubules.
    Soleimani M; Lesoine GA; Bergman JA; McKinney TD
    J Clin Invest; 1991 Oct; 88(4):1135-40. PubMed ID: 1918368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amiloride inhibition of the Na+-H+ exchanger in renal microvillus membrane vesicles.
    Kinsella JL; Aronson PS
    Am J Physiol; 1981 Oct; 241(4):F374-9. PubMed ID: 7315961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What are the driving forces for the proximal tubular H+ and Ca++ transport? The electrochemical gradient for Na+ and/or ATP.
    Ullrich KJ; Frömter E; Gmaj P; Kinne R; Murer H
    Curr Probl Clin Biochem; 1977 Oct 23-26; 8():170-7. PubMed ID: 28898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acid extrusion in S3 segment of rabbit proximal tubule. I. Effect of bilateral CO2/HCO3-.
    Chen LK; Boron WF
    Am J Physiol; 1995 Feb; 268(2 Pt 2):F179-92. PubMed ID: 7864155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of proximal NaCl reabsorption in the proximal tubule of the mammalian kidney.
    Berry CA; Rector FC
    Semin Nephrol; 1991 Mar; 11(2):86-97. PubMed ID: 2034928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.