These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 7386888)

  • 1. Determination of lead in drinking water by atomic-absorption spectrophotometry using an electrically heated graphite furnace and an ammonium tetramethylenedithiocarbamate extraction technique.
    Mitcham RP
    Analyst; 1980 Jan; 105(1246):43-7. PubMed ID: 7386888
    [No Abstract]   [Full Text] [Related]  

  • 2. [A rapid graphite furnace atomic absorption spectrometric method for the determination of trace copper and lead in surface water].
    Yu J; Chen S; Liu J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2000 Aug; 20(4):547-9. PubMed ID: 12945373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-line pre-concentration and determination of lead in potable water by flow injection atomic absorption spectrometry.
    Zhang YN; Riby P; Cox AG; McLeod CW; Date AR; Cheung YY
    Analyst; 1988 Jan; 113(1):125-8. PubMed ID: 3358497
    [No Abstract]   [Full Text] [Related]  

  • 4. Pre-concentration and determination of trace amounts of lead in water by continuous precipitation in an unsegmented-flow atomic absorption spectrometric system.
    Martínez-Jiménez P; Gallego M; Valcárcel M
    Analyst; 1987 Sep; 112(9):1233-6. PubMed ID: 3425925
    [No Abstract]   [Full Text] [Related]  

  • 5. [A Zeeman graphite furnace atomic absorption spectrometric method for the determination of trace copper and chromium in drinking water].
    Wang Z
    Guang Pu Xue Yu Guang Pu Fen Xi; 1999 Aug; 19(4):616-8. PubMed ID: 15818974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trace level enrichment of lead from environmental water samples utilizing dispersive liquid-liquid microextraction and quantitative determination by graphite furnace atomic absorption spectrometry.
    Teju E; Tadesse B; Megersa N
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(7):833-42. PubMed ID: 24679091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of an electrothermal atomisation procedure for the determination of lead in potable water.
    Webster J; Wood A
    Analyst; 1984 Oct; 109(10):1255-8. PubMed ID: 6524671
    [No Abstract]   [Full Text] [Related]  

  • 8. [Determination of trace Pb and Cd in water treatment reagent by graphite furnace atomic absorption spectrometry].
    Zheng E; Yu H; Xie H
    Guang Pu Xue Yu Guang Pu Fen Xi; 2000 Jun; 20(3):379-80. PubMed ID: 12958963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Determination of total chromium in drinking water by graphite furnace atomic absorption spectrometry].
    Mao H
    Wei Sheng Yan Jiu; 2004 May; 33(3):353. PubMed ID: 15211813
    [No Abstract]   [Full Text] [Related]  

  • 10. Influence of ascorbic acid on the matrix interferences observed during the carbon furnace atomic-absorption spectrophotometric determination of lead in some drinking waters.
    Regan JG; Warren J
    Analyst; 1978 May; 103(1226):447-51. PubMed ID: 666008
    [No Abstract]   [Full Text] [Related]  

  • 11. Lead and chromium concentrations in the potable water of the eastern province of Saudi Arabia.
    Hassan HM; Mustafa HT; Rihan TI
    Bull Environ Contam Toxicol; 1989 Oct; 43(4):529-33. PubMed ID: 2804394
    [No Abstract]   [Full Text] [Related]  

  • 12. Determination of lead in drinking water by atomic-absorption spectrophotometry with electrothermal atomisation.
    Bertenshaw MP; Gelsthorpe D; Wheatstone KC
    Analyst; 1981 Jan; 106(1258):23-31. PubMed ID: 7469029
    [No Abstract]   [Full Text] [Related]  

  • 13. Arsenic in Nova Scotian groundwater.
    Meranger JC; Subramanian KS; McCurdy RF
    Sci Total Environ; 1984 Oct; 39(1-2):49-55. PubMed ID: 6528287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slurry analysis after lead collection on a sorbent and its determination by electrothermal atomic absorption spectrometry.
    Baysal A; Tokman N; Akman S; Ozeroglu C
    J Hazard Mater; 2008 Feb; 150(3):804-8. PubMed ID: 17597292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of sub-microgram per liter quantities of arsenic in water by arsine generation followed by graphite furnace atomic absorption spectrometry.
    Shaikh AU; Tallman DE
    Anal Chem; 1977 Jul; 49(8):1093-6. PubMed ID: 883650
    [No Abstract]   [Full Text] [Related]  

  • 16. Determination of metals and their compounds in water.
    IARC Sci Publ; 1986; (71):289-361. PubMed ID: 3770856
    [No Abstract]   [Full Text] [Related]  

  • 17. Comparison of matrix modifiers in the determination of cadmium and lead in industrial waste water plants around Cairo by graphite furnace atomic absorption spectrophotometry.
    Abdel-Halim SH
    Bull Environ Contam Toxicol; 2003 Dec; 71(6):1213-21. PubMed ID: 14756291
    [No Abstract]   [Full Text] [Related]  

  • 18. Lead in drinking water.
    Kaphalia BS; Chandra H; Bhargava SK; Seth TD; Gupta BN
    Indian J Public Health; 1983; 27(2):64-9. PubMed ID: 6668065
    [No Abstract]   [Full Text] [Related]  

  • 19. Influence of the time of acidification after sample collection on the preservation of drinking water for lead determination.
    Miller RG; Doerger JU; Kopfler FC; Stober J; Roberson P
    Anal Chem; 1985 May; 57(6):1020-3. PubMed ID: 4014694
    [No Abstract]   [Full Text] [Related]  

  • 20. Preconcentration of cadmium, chromium, copper and lead in drinking water on the polyacrylic ester resin, XAD-7.
    Subramanian KS; Méranger JC; Wan CC; Corsini A
    Int J Environ Anal Chem; 1985; 19(4):261-72. PubMed ID: 4008160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.