BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 7387158)

  • 1. Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture.
    Russell JB; Dombrowski DB
    Appl Environ Microbiol; 1980 Mar; 39(3):604-10. PubMed ID: 7387158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphoenolpyruvate-dependent phosphorylation of hexoses by ruminal bacteria: evidence for the phosphotransferase transport system.
    Martin SA; Russell JB
    Appl Environ Microbiol; 1986 Dec; 52(6):1348-52. PubMed ID: 3789722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fermentation of xylans by Butyrivibrio fibrisolvens and other ruminal bacteria.
    Hespell RB; Wolf R; Bothast RJ
    Appl Environ Microbiol; 1987 Dec; 53(12):2849-53. PubMed ID: 3124741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of a Saccharomyces cerevisiae culture on ruminal bacteria that utilize lactate and digest cellulose.
    Callaway ES; Martin SA
    J Dairy Sci; 1997 Sep; 80(9):2035-44. PubMed ID: 9313145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular pH of acid-tolerant ruminal bacteria.
    Russell JB
    Appl Environ Microbiol; 1991 Nov; 57(11):3383-4. PubMed ID: 1781695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibiotic activity of an isocyanide metabolite of Trichoderma hamatum against rumen bacteria.
    Liss SN; Brewer D; Taylor A; Jones GA
    Can J Microbiol; 1985 Sep; 31(9):767-72. PubMed ID: 4084861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotransformation of 2,4,6-trinitrotoluene by pure culture ruminal bacteria.
    De Lorme M; Craig M
    Curr Microbiol; 2009 Jan; 58(1):81-6. PubMed ID: 18839246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of pH on growth rates of rumen amylolytic and lactilytic bacteria.
    Therion JJ; Kistner A; Kornelius JH
    Appl Environ Microbiol; 1982 Aug; 44(2):428-34. PubMed ID: 7125656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competition among three predominant ruminal cellulolytic bacteria in the absence or presence of non-cellulolytic bacteria.
    Chen J; Weimer P
    Microbiology (Reading); 2001 Jan; 147(Pt 1):21-30. PubMed ID: 11160797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of ruminal bacteria in the production and utilization of maltooligosaccharides from starch.
    Cotta MA
    Appl Environ Microbiol; 1992 Jan; 58(1):48-54. PubMed ID: 1539992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: development of probes for Ruminococcus species and evidence for bacteriocin production.
    Odenyo AA; Mackie RI; Stahl DA; White BA
    Appl Environ Microbiol; 1994 Oct; 60(10):3688-96. PubMed ID: 7527201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amylolytic activity of selected species of ruminal bacteria.
    Cotta MA
    Appl Environ Microbiol; 1988 Mar; 54(3):772-6. PubMed ID: 2454075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between rumen amylolytic and lactate-utilizing bacteria in growth on starch.
    Marounek M; Bartos S
    J Appl Bacteriol; 1987 Sep; 63(3):233-8. PubMed ID: 3429358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of maintenance energy expenditures and growth yields among several rumen bacteria grown on continuous culture.
    Russell JB; Baldwin RL
    Appl Environ Microbiol; 1979 Mar; 37(3):537-43. PubMed ID: 16345359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of substrate affinities among several rumen bacteria: a possible determinant of rumen bacterial competition.
    Russell JB; Baldwin RL
    Appl Environ Microbiol; 1979 Mar; 37(3):531-6. PubMed ID: 16345358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of branched-chain volatile fatty acids by certain anaerobic bacteria.
    Allison MJ
    Appl Environ Microbiol; 1978 May; 35(5):872-7. PubMed ID: 566082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic studies of pure cultures of rumen microorganisms.
    Joyner AE; Baldwin RL
    J Bacteriol; 1966 Nov; 92(5):1321-30. PubMed ID: 4380801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon dioxide requirement of various species of rumen bacteria.
    Dehority BA
    J Bacteriol; 1971 Jan; 105(1):70-6. PubMed ID: 5541030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic AMP in ruminal and other anaerobic bacteria.
    Cotta MA; Wheeler MB; Whitehead TR
    FEMS Microbiol Lett; 1994 Dec; 124(3):355-9. PubMed ID: 7851742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of potassium ion concentrations on the antimicrobial activities of ionophores against ruminal anaerobes.
    Dawson KA; Boling JA
    Appl Environ Microbiol; 1987 Oct; 53(10):2363-7. PubMed ID: 3426214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.