These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 7387982)

  • 1. Interpretation of the resonance Raman spectrum of bathorhodopsin based on visual pigment analogues.
    Eyring G; Curry B; Mathies R; Fransen R; Palings I; Lugtenburg J
    Biochemistry; 1980 May; 19(11):2410-8. PubMed ID: 7387982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assignment of fingerprint vibrations in the resonance Raman spectra of rhodopsin, isorhodopsin, and bathorhodopsin: implications for chromophore structure and environment.
    Palings I; Pardoen JA; van den Berg E; Winkel C; Lugtenburg J; Mathies RA
    Biochemistry; 1987 May; 26(9):2544-56. PubMed ID: 3607032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photophysiological functions of visual pigments.
    Yoshizawa T
    Adv Biophys; 1984; 17():5-67. PubMed ID: 6242325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonance Raman spectroscopy of octopus rhodopsin and its photoproducts.
    Pande C; Pande A; Yue KT; Callender R; Ebrey TG; Tsuda M
    Biochemistry; 1987 Aug; 26(16):4941-7. PubMed ID: 3663635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A resonance Raman study of octopus bathorhodopsin with deuterium labeled retinal chromophores.
    Deng H; Manor D; Weng G; Rath P; Koutalos Y; Ebrey T; Gebhard R; Lugtenburg J; Tsuda M; Callender RH
    Photochem Photobiol; 1991 Dec; 54(6):1001-7. PubMed ID: 1775525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assignment and interpretation of hydrogen out-of-plane vibrations in the resonance Raman spectra of rhodopsin and bathorhodopsin.
    Eyring G; Curry B; Broek A; Lugtenburg J; Mathies R
    Biochemistry; 1982 Jan; 21(2):384-93. PubMed ID: 7074022
    [No Abstract]   [Full Text] [Related]  

  • 7. Complete assignment of the hydrogen out-of-plane wagging vibrations of bathorhodopsin: chromophore structure and energy storage in the primary photoproduct of vision.
    Palings I; van den Berg EM; Lugtenburg J; Mathies RA
    Biochemistry; 1989 Feb; 28(4):1498-507. PubMed ID: 2719913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonance Raman studies of bathorhodopsin: evidence for a protonated Schiff base linkage.
    Eyring G; Mathies R
    Proc Natl Acad Sci U S A; 1979 Jan; 76(1):33-7. PubMed ID: 284349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonance Raman studies of the HOOP modes in octopus bathorhodopsin with deuterium-labeled retinal chromophores.
    Deng H; Manor D; Weng G; Rath P; Koutalos Y; Ebrey T; Gebhard R; Lugtenburg J; Tsuda M; Callender RH
    Biochemistry; 1991 May; 30(18):4495-502. PubMed ID: 2021639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance Raman studies of the primary photochemical event in visual pigments.
    Aton B; Doukas AG; Narva D; Callender RH; Dinur U; Honig B
    Biophys J; 1980 Jan; 29(1):79-94. PubMed ID: 7260248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A resonance Raman study of the C=N configurations of octopus rhodopsin, bathorhodopsin, and isorhodopsin.
    Huang L; Deng H; Weng G; Koutalos Y; Ebrey T; Groesbeek M; Lugtenburg J; Tsuda M; Callender RH
    Biochemistry; 1996 Jul; 35(26):8504-10. PubMed ID: 8679611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of the infrared difference spectra for octopus and bovine rhodopsins and their bathorhodopsin photointermediates.
    Bagley KA; Eisenstein L; Ebrey TG; Tsuda M
    Biochemistry; 1989 Apr; 28(8):3366-73. PubMed ID: 2742842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromophore structure in lumirhodopsin and metarhodopsin I by time-resolved resonance Raman microchip spectroscopy.
    Pan D; Mathies RA
    Biochemistry; 2001 Jul; 40(26):7929-36. PubMed ID: 11425321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonance Raman microprobe spectroscopy of rhodopsin mutants: effect of substitutions in the third transmembrane helix.
    Lin SW; Sakmar TP; Franke RR; Khorana HG; Mathies RA
    Biochemistry; 1992 Jun; 31(22):5105-11. PubMed ID: 1351402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonance Raman spectroscopy of squid and bovine visual pigments: the primary photochemistry in visual transduction.
    Sulkes M; Lewis A; Marcus MA
    Biochemistry; 1978 Oct; 17(22):4712-22. PubMed ID: 728380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure of the retinylidene chromophore in bathorhodopsin.
    Lewis A
    Biophys J; 1978 Oct; 24(1):249-54. PubMed ID: 708828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A resonance Raman study of the C=C stretch modes in bovine and octopus visual pigments with isotopically labeled retinal chromophores.
    Huang L; Deng H; Koutalos Y; Ebrey T; Groesbeek M; Lugtenburg J; Tsuda M; Callender RH
    Photochem Photobiol; 1997 Dec; 66(6):747-54. PubMed ID: 9421961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steric barrier to bathorhodopsin decay in 5-demethyl and mesityl analogues of rhodopsin.
    Lewis JW; Fan GB; Sheves M; Szundi I; Kliger DS
    J Am Chem Soc; 2001 Oct; 123(41):10024-9. PubMed ID: 11592880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fourier-transform infrared difference spectroscopy of rhodopsin and its photoproducts at low temperature.
    Bagley KA; Balogh-Nair V; Croteau AA; Dollinger G; Ebrey TG; Eisenstein L; Hong MK; Nakanishi K; Vittitow J
    Biochemistry; 1985 Oct; 24(22):6055-71. PubMed ID: 4084506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonance Raman examination of the wavelength regulation mechanism in human visual pigments.
    Kochendoerfer GG; Wang Z; Oprian DD; Mathies RA
    Biochemistry; 1997 Jun; 36(22):6577-87. PubMed ID: 9184137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.