BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 7387998)

  • 1. Conformational mobility of deoxyribonucleic acid, transfer ribonucleic acid, and poly(adenylic acid) as monitored by carbon-13 nuclear magnetic resonance relaxation.
    Bolton PH; James TL
    Biochemistry; 1980 Apr; 19(7):1388-92. PubMed ID: 7387998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural-abundance carbon-13 Fourier-transform nuclear magnetic resonance spectra and spin lattice relaxation times of unfractionated yeast transfer-FNA.
    Komoroski RA; Allerhand A
    Proc Natl Acad Sci U S A; 1972 Jul; 69(7):1804-8. PubMed ID: 4558659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Internal dynamics of transfer ribonucleic acid determined by nuclear magnetic resonance of carbon-13-enriched ribose carbon 1.
    Schmidt PG; Playl T; Agris PF
    Biochemistry; 1983 Mar; 22(6):1408-15. PubMed ID: 6188489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA duplex dynamics: NMR relaxation studies of a decamer with uniformly 13C-labeled purine nucleotides.
    Kojima C; Ono A; Kainosho M; James TL
    J Magn Reson; 1998 Dec; 135(2):310-33. PubMed ID: 9878461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Backbone and side-chain motion in myosin, subfragment 1, and rod determined by natural abundance carbon-13 NMR.
    Eads TM; Mandelkern L
    J Biol Chem; 1984 Sep; 259(17):10689-94. PubMed ID: 6469979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deuterium NMR in the solid-state and in solution of the molecular motion of the bases in poly(I) and poly(I) . poly(C).
    Bendel P; Murphy-Boesch J; James TL
    Biochim Biophys Acta; 1983 Sep; 759(3):205-13. PubMed ID: 6882799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon 13 spin-lattice relaxation, linewidth, and nuclear Overhauser enhancement measurements of nucleosome length DNA.
    Levy GC; Hilliard PR; Levy LF; Rill RL; Inners R
    J Biol Chem; 1981 Oct; 256(19):9986-9. PubMed ID: 7275990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 13C-NMR relaxation in three DNA oligonucleotide duplexes: model-free analysis of internal and overall motion.
    Borer PN; LaPlante SR; Kumar A; Zanatta N; Martin A; Hakkinen A; Levy GC
    Biochemistry; 1994 Mar; 33(9):2441-50. PubMed ID: 8117704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Internal motions in yeast phenylalanine transfer RNA from 13C NMR relaxation rates of modified base methyl groups: a model-free approach.
    Schmidt PG; Sierzputowska-Gracz H; Agris PF
    Biochemistry; 1987 Dec; 26(26):8529-34. PubMed ID: 3327524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics and structure of the random coil and helical states of the collagen peptide, alpha 1-CB2, as determined by 13C magnetic resonance.
    Torchia DA; Lyerla JR; Quattrone AJ
    Biochemistry; 1975 Mar; 14(5):887-900. PubMed ID: 1125175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural abundance carbon-13 nuclear magnetic resonance studies of histone and DNA dynamics in nucleosome cores.
    Hilliard PR; Smith RM; Rill RL
    J Biol Chem; 1986 May; 261(13):5992-8. PubMed ID: 3700380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the molecular dynamics of alamethicin using 13C NMR: implications for the mechanism of gating of a voltage-dependent channel.
    Kelsh LP; Ellena JF; Cafiso DS
    Biochemistry; 1992 Jun; 31(22):5136-44. PubMed ID: 1606136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tryptophan sidechain dynamics in hydrophobic oligopeptides determined by use of 13C nuclear magnetic resonance spectroscopy.
    Weaver AJ; Kemple MD; Prendergast FG
    Biophys J; 1988 Jul; 54(1):1-15. PubMed ID: 3416021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformation and dynamics of short DNA duplexes: (dC-dG)3 and (dC-dG)4.
    Borer PN; Zanatta N; Holak TA; Levy GC; van Boom JH; Wang AH
    J Biomol Struct Dyn; 1984 Jun; 1(6):1373-86. PubMed ID: 6400826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Internal motions in B- and Z-form poly(dG-dC).poly(dG-dC): 1H NMR relaxation studies.
    Mirau PA; Behling RW; Kearns DR
    Biochemistry; 1985 Oct; 24(22):6200-11. PubMed ID: 4084514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of an Escherichia coli mutant for carbon-13 enrichment of tRNA for NMR studies.
    Agris PF; Fujiwara FG; Schmidt CF; Loeppky RN
    Nucleic Acids Res; 1975 Sep; 2(9):1503-12. PubMed ID: 1101225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternate-site isotopic labeling of ribonucleotides for NMR studies of ribose conformational dynamics in RNA.
    Johnson JE; Julien KR; Hoogstraten CG
    J Biomol NMR; 2006 Aug; 35(4):261-74. PubMed ID: 16937241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mobility of individual 5-fluorouridine residues in 5-fluorouracil-substituted Escherichia coli valine transfer RNA. A 19F nuclear magnetic resonance relaxation study.
    Hardin CC; Horowitz J
    J Mol Biol; 1987 Oct; 197(3):555-69. PubMed ID: 2450204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational flexibility of luteinizing hormone-releasing hormone in aqueous solution. A carbon-13 spin-lattice relaxation time study.
    Deslauriers R; Levy GC; McGregor WH; Sarantakis K; Smith IC
    Biochemistry; 1975 Sep; 14(19):4335-43. PubMed ID: 170960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR studies of dynamics in RNA and DNA by 13C relaxation.
    Shajani Z; Varani G
    Biopolymers; 2007 Aug 5-15; 86(5-6):348-59. PubMed ID: 17154290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.