These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 7388123)

  • 1. Investigations of the rhodopsin/Meta I and rhodopsin/Meta II transitions of bovine rod outer segments by means of kinetic infrared spectroscopy.
    Siebert F; Mäntele W
    Biophys Struct Mech; 1980; 6(2):147-64. PubMed ID: 7388123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flash-induced kinetic infrared spectroscopy applied to biochemical systems.
    Siebert F; Mäntele W; Kreutz W
    Biophys Struct Mech; 1980; 6(2):139-46. PubMed ID: 7388122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fourier-transform infrared difference spectroscopy of rhodopsin and its photoproducts at low temperature.
    Bagley KA; Balogh-Nair V; Croteau AA; Dollinger G; Ebrey TG; Eisenstein L; Hong MK; Nakanishi K; Vittitow J
    Biochemistry; 1985 Oct; 24(22):6055-71. PubMed ID: 4084506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fourier-transform infrared spectroscopy applied to rhodopsin. The problem of the protonation state of the retinylidene Schiff base re-investigated.
    Siebert F; Mäntele W; Gerwert K
    Eur J Biochem; 1983 Oct; 136(1):119-27. PubMed ID: 6311543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance Raman study of the primary photochemistry of visual pigments. Hypsorhodopsin.
    Pande AJ; Callender RH; Ebrey TG; Tsuda M
    Biophys J; 1984 Mar; 45(3):573-6. PubMed ID: 6713069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deactivation of rhodopsin in the transition from the signaling state meta II to meta III involves a thermal isomerization of the retinal chromophore C[double bond]D.
    Vogel R; Siebert F; Mathias G; Tavan P; Fan G; Sheves M
    Biochemistry; 2003 Aug; 42(33):9863-74. PubMed ID: 12924935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution solid-state 13C-NMR study of carbons C-5 and C-12 of the chromophore of bovine rhodopsin. Evidence for a 6-S-cis conformation with negative-charge perturbation near C-12.
    Mollevanger LC; Kentgens AP; Pardoen JA; Courtin JM; Veeman WS; Lugtenburg J; de Grip WJ
    Eur J Biochem; 1987 Feb; 163(1):9-14. PubMed ID: 3816805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonance Raman spectroscopy of squid and bovine visual pigments: the primary photochemistry in visual transduction.
    Sulkes M; Lewis A; Marcus MA
    Biochemistry; 1978 Oct; 17(22):4712-22. PubMed ID: 728380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoisomerization efficiency in UV-absorbing visual pigments: protein-directed isomerization of an unprotonated retinal Schiff base.
    Tsutsui K; Imai H; Shichida Y
    Biochemistry; 2007 May; 46(21):6437-45. PubMed ID: 17474760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flash photolysis and low temperature photochemistry of bovine rhodopsin with a fixed 11-ene.
    Mao B; Tsuda M; Ebrey TG; Akita H; Balogh-Nair V; Nakanishi K
    Biophys J; 1981 Aug; 35(2):543-6. PubMed ID: 7272450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A vibrational analysis of rhodopsin and bacteriorhodopsin chromophore analogues: resonance Raman and infrared spectroscopy of chemically modified retinals and Schiff bases.
    Cookingham RE; Lewis A; Lemley AT
    Biochemistry; 1978 Oct; 17(22):4699-711. PubMed ID: 728379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoreactions of metarhodopsin III.
    Vogel R; Lüdeke S; Radu I; Siebert F; Sheves M
    Biochemistry; 2004 Aug; 43(31):10255-64. PubMed ID: 15287753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonance Raman studies of bovine metarhodopsin I and metarhodopsin II.
    Doukas AG; Aton B; Callender RH; Ebrey TG
    Biochemistry; 1978 Jun; 17(12):2430-5. PubMed ID: 678522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energetics of primary processes in visula escitation: photocalorimetry of rhodopsin in rod outer segment membranes.
    Cooper A; Converse CA
    Biochemistry; 1976 Jul; 15(14):2970-8. PubMed ID: 8077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable laser resonance Raman spectroscopic investigations of the transduction process in vertebrate rod cells.
    Lewis A
    Fed Proc; 1976 Jan; 35(1):51-3. PubMed ID: 1245232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhodopsin regeneration is accelerated via noncovalent 11-cis retinal-opsin complex--a role of retinal binding pocket of opsin.
    Matsumoto H; Yoshizawa T
    Photochem Photobiol; 2008; 84(4):985-9. PubMed ID: 18399914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nature of the primary photochemical events in rhodopsin and isorhodopsin.
    Birge RR; Einterz CM; Knapp HM; Murray LP
    Biophys J; 1988 Mar; 53(3):367-85. PubMed ID: 2964878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opsin/all-trans-retinal complex activates transducin by different mechanisms than photolyzed rhodopsin.
    Jäger S; Palczewski K; Hofmann KP
    Biochemistry; 1996 Mar; 35(9):2901-8. PubMed ID: 8608127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-resolved rapid-scan Fourier transform infrared difference spectroscopy on a noncyclic photosystem: rhodopsin photointermediates from Lumi to Meta II.
    Lüdeke S; Lórenz Fonfría VA; Siebert F; Vogel R
    Biopolymers; 2006 Oct; 83(2):159-69. PubMed ID: 16721790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absolute absorption spectra of batho- and photorhodopsins at room temperature. Picosecond laser photolysis of rhodopsin in polyacrylamide.
    Kandori H; Shichida Y; Yoshizawa T
    Biophys J; 1989 Sep; 56(3):453-7. PubMed ID: 2790133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.