These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 7389716)

  • 1. Exercise and mitochondrial calcium transport in the BIO 14.6 hamster.
    Tate CA; McMurray RG; Riggs CE; Setaro F; Horvath SM
    Eur J Appl Physiol Occup Physiol; 1980; 43(2):167-72. PubMed ID: 7389716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defective membrane systems in dystrophic skeletal muscle of the UM-X7.1 strain of genetically myopathic hamster.
    Dhalla NS; Singh A; Lee SL; Anand MB; Bernatsky AM; Jasmin G
    Clin Sci Mol Med; 1975 Oct; 49(4):359-68. PubMed ID: 127686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversal of impaired oxidative phosphorylation and calcium overloading in the skeletal muscle mitochondria of CHF-146 dystrophic hamsters.
    Bhattacharya SK; Johnson PL; Thakar JH
    Mol Chem Neuropathol; 1998 May; 34(1):53-77. PubMed ID: 9778646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of exercise training and exhaustion on 45Ca uptake by rat skeletal muscle mitochondria and sarcoplasmic reticulum.
    Bonner HW; Leslie SW; Combs AB; Tate CA
    Res Commun Chem Pathol Pharmacol; 1976 Aug; 14(4):767-70. PubMed ID: 134437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of ruthenium red on oxidative phosphorylation and the calcium and magnesium content of skeletal muscle mitochondria of normal and BIO 14.6 dystrophic hamsters.
    Thakar JH; Wrogemann K; Blanchaer MC
    Biochim Biophys Acta; 1973 Jul; 314(1):8-14. PubMed ID: 4741598
    [No Abstract]   [Full Text] [Related]  

  • 6. Calcium transport by the subcellular particles of the skeletal muscle of genetically dystrophic hamster.
    Dhalla NS; Sulakhe PV
    Biochem Med; 1973 Feb; 7(1):159-68. PubMed ID: 4265154
    [No Abstract]   [Full Text] [Related]  

  • 7. Calcium uptake in skeletal muscle mitochondria. II. The effects of long-term chronic and acute exercise.
    Tate CA; Bonner HW; Leslie SW
    Eur J Appl Physiol Occup Physiol; 1978 Aug; 39(2):117-22. PubMed ID: 689007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Similar in vitro fatigue patterns of normal and BIO 40.54 dystrophic hamster extensor digitorum longus muscle.
    Kozachuk WE; Oteruelo FT; Bressler BH
    Exp Neurol; 1979 Jul; 65(1):29-41. PubMed ID: 262232
    [No Abstract]   [Full Text] [Related]  

  • 9. On the role of mitochondria in the hereditary cardiomyopathy of the Syrian hamster.
    Wrogemann K; Blanchaer MC; Thakar JH; Mezon BJ
    Recent Adv Stud Cardiac Struct Metab; 1975; 6():231-41. PubMed ID: 172988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abnormal oxidative phosphorylation in skeletal muscle mitochondria of the BIO 14.6 dystrophic Syrian hamster.
    Wrogemann K; Blanchaer MC; Jacobson BE
    Recent Adv Stud Cardiac Struct Metab; 1972; 1():289-93. PubMed ID: 4681465
    [No Abstract]   [Full Text] [Related]  

  • 11. Regional and fibre type glycogen utilization patterns in the hamster diaphragm following swimming.
    Reid WD; Cairns CL; McRae DJ; Chung F; Wiggs BR; Pardy RL
    Respir Med; 1994 Jul; 88(6):421-7. PubMed ID: 7938792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical alterations in heart after exhaustive swimming in rats.
    Pierce GN; Kutryk MJ; Dhalla KS; Beamish RE; Dhalla NS
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Aug; 57(2):326-31. PubMed ID: 6469802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Striated muscle lesions in dystrophic hamsters.
    Caulfield JB
    Prog Exp Tumor Res; 1972; 16():274-86. PubMed ID: 5040545
    [No Abstract]   [Full Text] [Related]  

  • 14. Differing populations of mitochondria isolated from the skeletal muscle of normal and dystrophic hamsters.
    Mezon BJ; Wrogemann K; Blanchaer MC
    Can J Biochem; 1974 Nov; 52(11):1024-32. PubMed ID: 4429865
    [No Abstract]   [Full Text] [Related]  

  • 15. Sodium transport and fluid balance in lungs from normal and dystrophic hamsters.
    Waltz WF; Burbach JA; Schlenker EH; Goodman BE
    J Appl Physiol (1985); 1994 Oct; 77(4):1750-4. PubMed ID: 7836195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial calcium content and oxidative phosphorylation in heart and skeletal muscle of dystrophic mice.
    Nylen EG; Wrogemann K
    Exp Neurol; 1983 Apr; 80(1):69-80. PubMed ID: 6832274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium channels in normal and dystrophic hamster cardiac muscle. [3H]nitrendipine binding studies.
    Howlett SE; Gordon T
    Biochem Pharmacol; 1987 Aug; 36(16):2653-9. PubMed ID: 2440447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical aspects of muscle necrosis in hamster dystrophy.
    Wrogemann K; Hayward WA; Blanchaer MC
    Ann N Y Acad Sci; 1979; 317():30-45. PubMed ID: 289313
    [No Abstract]   [Full Text] [Related]  

  • 19. Effects of swimming on dystrophic Syrian hamster heart.
    Ho KW; Carrow R; Taylor J; Roy R; Lindstrom J; Heusner W; Van Huss W
    Exp Pathol (Jena); 1975; 11(5-6):247-54. PubMed ID: 1233311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inability of myoglobin to increase in dystrophic skeletal muscle during daily exercise.
    Booth FW
    Pflugers Arch; 1978 Feb; 373(2):175-8. PubMed ID: 204904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.