These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 738995)
1. Studies on luciferase from Photobacterium phosphoreum. XI. Interaction of 8-substituted FMNH2 with luciferase. Watanabe T; Matsui K; Kasai S; Nakamura T J Biochem; 1978 Dec; 84(6):1441-6. PubMed ID: 738995 [TBL] [Abstract][Full Text] [Related]
2. Studies on luciferase from Photobacterium phosphoreum. VI. Stoichiometry and mode of binding of FMNH2 and O2 to stripped luciferase. Watanabe T; Tomita G; Nakamura T J Biochem; 1974 Jun; 75(6):1249-55. PubMed ID: 4426891 [No Abstract] [Full Text] [Related]
3. Studies on luciferase from Photobacterium phosphoreum. VIII. FMN-H2O2 initiated bioluminescence and the thermodynamics of the elementary steps of the luciferase reaction. Watanabe T; Nakamura T J Biochem; 1976 Mar; 79(3):489-95. PubMed ID: 950335 [TBL] [Abstract][Full Text] [Related]
4. Complementation of subunits from different bacterial luciferases. Evidence for the role of the beta subunit in the bioluminescent mechanism. Meighen EA; Bartlet I J Biol Chem; 1980 Dec; 255(23):11181-7. PubMed ID: 6969259 [TBL] [Abstract][Full Text] [Related]
5. [Isolation and purification of bacterial luciferase from Photobacterium fischeri for analytical purposes]. Shumikhin VN; Danilov VS; Malkov IuA; Egorov NS Biokhimiia; 1980 Sep; 45(9):1576-81. PubMed ID: 7248358 [TBL] [Abstract][Full Text] [Related]
6. Activity and stability of the luciferase--flavin intermediate. Becvar JE; Tu SC; Hastings JW Biochemistry; 1978 May; 17(9):1807-12. PubMed ID: 306832 [TBL] [Abstract][Full Text] [Related]
7. Isolation of bacterial luciferases by affinity chromatography on 2,2-diphenylpropylamine-Sepharose: phosphate-mediated binding to an immobilized substrate analogue. Holzman TF; Baldwin TO Biochemistry; 1982 Nov; 21(24):6194-201. PubMed ID: 6983889 [TBL] [Abstract][Full Text] [Related]
8. Studies on luciferase from Photobacterium phosphoreum. IX. Further studies on the spectroscopic characteristics of the enzyme-FMN intermediates. Ashizawa N; Nakamura T; Watanabe T J Biochem; 1977 Apr; 81(4):1057-62. PubMed ID: 881410 [TBL] [Abstract][Full Text] [Related]
9. Control of luminescence decay and flavin binding by the LuxA carboxyl-terminal regions in chimeric bacterial luciferases. Valkova N; Szittner R; Meighen EA Biochemistry; 1999 Oct; 38(42):13820-8. PubMed ID: 10529227 [TBL] [Abstract][Full Text] [Related]
10. Bacterial bioluminescence: equilibrium association measurements, quantum yields, reaction kinetics, and overall reaction scheme. Lee J; Murphy CL Biochemistry; 1975 May; 14(10):2259-68. PubMed ID: 807236 [TBL] [Abstract][Full Text] [Related]
11. Studies on luciferase form Photobacterium phosphoreum. V. An enzyme-FMN intermediate complex in the bioluminescent reaction. Yoshida K; Takahashi M; Nakamura T J Biochem; 1974 Mar; 75(3):583-9. PubMed ID: 4834652 [No Abstract] [Full Text] [Related]
12. Bioluminescence emission of bacterial luciferase with 1-deaza-FMN. Evidence for the noninvolvement of N(1)-protonated flavin species as emitters. Kurfürst M; Macheroux P; Ghisla S; Hastings JW Eur J Biochem; 1989 May; 181(2):453-7. PubMed ID: 2714296 [TBL] [Abstract][Full Text] [Related]
13. Studies on luciferase from Photobacterium phosphoreum. VII. Interaction with carboxylic acid. Yoshida K; Nakamura T J Biochem; 1974 Nov; 76(5):985-90. PubMed ID: 4452671 [No Abstract] [Full Text] [Related]
14. Mechanism of bacterial bioluminescence: 4a,5-dihydroflavin analogs as models for luciferase hydroperoxide intermediates and the effect of substituents at the 8-position of flavin on luciferase kinetics. Eckstein JW; Hastings JW; Ghisla S Biochemistry; 1993 Jan; 32(2):404-11. PubMed ID: 8422349 [TBL] [Abstract][Full Text] [Related]
15. [Inhibitory analysis of the luminescent electron transport chain of Photobacterium fischeri]. Ismailov AD; Danilov VS; Malkov IuA; Egorov NS Biokhimiia; 1981 Jan; 46(1):40-6. PubMed ID: 7248374 [TBL] [Abstract][Full Text] [Related]
16. Differential effects of 8-anilino-1-naphthalenesulfonate upon binding of oxidized and reduced flavines by bacterial luciferase. Tu S; Hastings JW Biochemistry; 1975 Sep; 14(19):4310-6. PubMed ID: 810158 [TBL] [Abstract][Full Text] [Related]
17. Studies on luciferase from Photobacterium phosphoreum. X. Heat of formation of the intermediate in the bioluminescent reaction studied by stopped-flow calorimetry. Nakamura T J Biochem; 1978 Apr; 83(4):1077-83. PubMed ID: 659382 [TBL] [Abstract][Full Text] [Related]
18. Intermediates in the bacterial luciferase reaction. Yoshida K; Takahashi M; Nakamura T Biochem Biophys Res Commun; 1973 Jun; 52(4):1470-4. PubMed ID: 4717759 [No Abstract] [Full Text] [Related]
19. Photoexcited bacterial luminescence. Spectral properties and mechanistic implication of a reduced flavine-like prosthetic group associated with photoexcitable luciferase. Tu SC; Hastings JW Biochemistry; 1975 May; 14(9):1975-80. PubMed ID: 804918 [TBL] [Abstract][Full Text] [Related]
20. Tryptophan 250 on the alpha subunit plays an important role in flavin and aldehyde binding to bacterial luciferase. Effects of W-->Y mutations on catalytic function. Li Z; Meighen EA Biochemistry; 1995 Nov; 34(46):15084-90. PubMed ID: 7578121 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]