BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 739006)

  • 1. The structure and function of acid proteases. IX. Isolation and amino acid sequences of the peptides containing the active site aspartyl residues reactive with diazoacetyl-DL-norleucine methyl ester and 1,2-epoxy-3-(p-nitrophenoxy)propane in Rhizopus chinensis acid protease.
    Nakamura S; Takahashi K
    J Biochem; 1978 Dec; 84(6):1593-600. PubMed ID: 739006
    [No Abstract]   [Full Text] [Related]  

  • 2. Amino acid sequences around 1, 2-epoxy-3-(p-nitrophenoxy)propane-reactive residues in rhizopus chinensis acid protease: homology with pepsin and rennin.
    Nakamura S; Takahashi K
    J Biochem; 1977 Mar; 81(3):805-7. PubMed ID: 16879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structure and function of acid proteases. V. Comparative studies on the specific inhibition of acid proteases by diazoacetyl-DL-norleucine methyl ester, 1,2-epoxy-3-(p-nitrophenoxy) propane and pepstatin.
    Takahashi K; Chang WJ
    J Biochem; 1976 Sep; 80(3):497-506. PubMed ID: 10290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of the acid proteinase from Neurospora crassa by diazoacetyl-DL-norleucine methyl ester, 1,2-epoxy-3-(4-nitrophenoxy)propane and pepstatin.
    Kaehn K; Morr M; Kula MR
    Hoppe Seylers Z Physiol Chem; 1979 Jun; 360(6):791-4. PubMed ID: 38198
    [No Abstract]   [Full Text] [Related]  

  • 5. The structure and function of acid proteases. III. Isolation and characterization of the active-site peptides from bovine rennin.
    Chang WJ; Takahashi K
    J Biochem; 1974 Sep; 76(3):467-74. PubMed ID: 4612029
    [No Abstract]   [Full Text] [Related]  

  • 6. Structural and functional determinants of Mucor miehei protease VI. Inactivation of the enzyme by diazoacetyl norleucine methyl esters, pepstatin and 1,2-epoxy-30(p-nitro-phenyoxy)propane.
    Rickert WS; McBride-Warren PA
    Biochim Biophys Acta; 1977 Jan; 480(1):262-74. PubMed ID: 831836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structure and function of acid proteases. IV. Inactivation of the acid protease from Mucor pusillus by acid protease-specific inhibitors.
    Takahashi K; Chang WJ; Arima K
    J Biochem; 1976 Jul; 80(1):61-7. PubMed ID: 9381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure and function of acid proteases. Specific inactivation of an acid protease from Rhizopus chinensis by diazoacetyl-DL-norleucine methyl ester.
    Mizobe F; Takahashi K; Ando T
    J Biochem; 1973 Jan; 73(1):61-8. PubMed ID: 4570372
    [No Abstract]   [Full Text] [Related]  

  • 9. The structure and function of acid proteases. VI. Effects of acid protease-specific inhibitors on the acid proteases from Aspergillus niger var. macrosporus.
    Chang WJ; Horiuchi S; Takahashi K; Yamasaki M; Yamada Y
    J Biochem; 1976 Nov; 80(5):975-81. PubMed ID: 12156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acid proteases. I. Inactivation of Cladosporium acid protease by diazoacetyl-DL-norleucine methyl ester as an active-site-directed irreversible inhibitor.
    Kanazawa H
    J Biochem; 1977 Jun; 81(6):1739-44. PubMed ID: 19445
    [No Abstract]   [Full Text] [Related]  

  • 11. Inactivation of cathepsin D from human gastric mucosa and from stomach carcinoma by diazoacetyl-DL-norleucine methyl ester.
    Dionyssiou-Asteriou A; Rakitzis ET
    Biochem Pharmacol; 1978 Mar; 27(5):827-9. PubMed ID: 566106
    [No Abstract]   [Full Text] [Related]  

  • 12. The structure and function of acid proteases. VIII. Purification and characterization of cathepsins D from Japanese monkey lung.
    Moriyama A; Takahashi K
    J Biochem; 1978 Feb; 83(2):441-51. PubMed ID: 24623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and amino acid sequence of a peptide containing an epoxide-reactive residue from the thermolysin-digest of Scytalidium lignicolum acid protease B.
    Tsuru D; Shimada S; Maruta S; Yoshimoto T; Oda K; Murao S; Miyata T; Iwanaga S
    J Biochem; 1986 May; 99(5):1537-9. PubMed ID: 3519605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The amino terminal sequences of acid proteases-human pepsin and gastricsin and the protease of Rhizopus chinensis.
    Sepulveda P; Jackson KW; Tang J
    Biochem Biophys Res Commun; 1975 Apr; 63(4):1106-12. PubMed ID: 236753
    [No Abstract]   [Full Text] [Related]  

  • 15. Inactivation of Rhizopus chinensis acid protease by some diazo compounds.
    Tsuru D; Fujiwara K; Watanabe R; Yoshimoto T; Hayashida S
    J Biochem; 1974 Feb; 75(2):261-8. PubMed ID: 4837444
    [No Abstract]   [Full Text] [Related]  

  • 16. The crystal at 5.5A resolution of an acid-protease from Rhizopus chinensis.
    Subramanian E; Swan ID; Davies DR
    Biochem Biophys Res Commun; 1976 Feb; 68(3):875-80. PubMed ID: 1259735
    [No Abstract]   [Full Text] [Related]  

  • 17. Bovine pepsinogens and pepsins. The sequence around a reactive aspartyl residue.
    Meitner PA
    Biochem J; 1971 Oct; 124(4):673-6. PubMed ID: 4943483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pepsinogen C and pepsin C from gastric mucosa of Japanese monkey. Purification and characterization.
    Kageyama T; Takahashi K
    J Biochem; 1976 Nov; 80(5):983-92. PubMed ID: 12157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of acid proteases from Rhizopus chinensis, Aspergillus saitoi and Mucor pusillus, and calf rennin by diazoactylnorleucine methyl ester.
    Takahashi K; Mizobe F; Change WJ
    J Biochem; 1972 Jan; 71(1):161-4. PubMed ID: 4552474
    [No Abstract]   [Full Text] [Related]  

  • 20. The effect of acid proteinase inhibitors on chicken pepsin.
    Llewellin JM; Green ML
    Biochem J; 1975 Nov; 151(2):319-26. PubMed ID: 3165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.