These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 7390969)
1. Sequence homology between potato and rabbit muscle phosphroylases. Isolation of cysteinyl peptides by covalent chromatography from the potato enzyme and their amino acid sequences. Nakano K; Fukui T; Matsubara H J Biochem; 1980 Mar; 87(3):919-27. PubMed ID: 7390969 [TBL] [Abstract][Full Text] [Related]
2. Potato and rabbit muscle phosphorylases: comparative studies on the structure, function and regulation of regulatory and nonregulatory enzymes. Fukui T; Shimomura S; Nakano K Mol Cell Biochem; 1982 Feb; 42(3):129-44. PubMed ID: 7062910 [TBL] [Abstract][Full Text] [Related]
3. Structural similarities in the active-site region between potato and rabbit muscle phosphorylases: a lysyl residue located close to the pyridoxal 5'-phosphate. Tagaya M; Nakano K; Shimomura S; Fukui T J Biochem; 1982 Feb; 91(2):599-606. PubMed ID: 6802812 [TBL] [Abstract][Full Text] [Related]
4. The complete amino acid sequence of potato alpha-glucan phosphorylase. Nakano K; Fukui T J Biol Chem; 1986 Jun; 261(18):8230-6. PubMed ID: 3722153 [TBL] [Abstract][Full Text] [Related]
5. Structural basis for the difference of the regulatory properties between potato and rabbit muscle phosphrylases. The NH2-terminal sequence of the potato enzyme. Nakano K; Fukui T; Matsubara H J Biol Chem; 1980 Oct; 255(19):9255-61. PubMed ID: 7410423 [TBL] [Abstract][Full Text] [Related]
6. Isolation and sequence studies of cysteinyl peptides from Spirulina glutathione reductase: comparison of active site cysteine peptides with those of other flavoprotein disulfide oxidoreductases. Cui JY; Wakabayashi S; Wada K; Fukuyama K; Matsubara H J Biochem; 1989 Mar; 105(3):390-4. PubMed ID: 2499573 [TBL] [Abstract][Full Text] [Related]
7. Amino acid sequence around the pyridoxal 5'-phosphate binding site in potato phosphorylase. Nakano K; Wakabayashi S; Hase T; Matsubara H; Fukui T J Biochem; 1978 Apr; 83(4):1085-94. PubMed ID: 659383 [TBL] [Abstract][Full Text] [Related]
8. The subunit structure of alpha-glucan phosphorylase from potato. Iwata S; Fukui T FEBS Lett; 1973 Oct; 36(2):222-6. PubMed ID: 4754267 [No Abstract] [Full Text] [Related]
9. Amino acid sequence of cyanogen bromide fragments of potato phosphorylase. Nakano K; Tashiro Y; Kikumoto Y; Tagaya M; Fukui T J Biol Chem; 1986 Jun; 261(18):8224-9. PubMed ID: 3722152 [TBL] [Abstract][Full Text] [Related]
10. Comparative sequence studies of phosphorylases from potato tuber and rabbit skeletal muscle. Nakano K; Kikumoto Y; Fukui T Prog Clin Biol Res; 1984; 144A():171-80. PubMed ID: 6728844 [No Abstract] [Full Text] [Related]
11. Measurement of active-site homology between potato and rabbit muscle alpha-glucan phosphorylases through use of a linear free energy relationship. Withers SG; Rupitz K Biochemistry; 1990 Jul; 29(27):6405-9. PubMed ID: 2207081 [TBL] [Abstract][Full Text] [Related]
12. Photooxidation of alpha-glucan phosphorylases from rabbit muscle and potato tubers. Kamogawa A; Fukui T Biochim Biophys Acta; 1975 Oct; 403(2):326-34. PubMed ID: 241401 [TBL] [Abstract][Full Text] [Related]
13. The role of pyridoxal 5'-phosphate in plant phosphorylase. Shimomura S; Emman K; Fukui T J Biochem; 1980 Apr; 87(4):1043-52. PubMed ID: 7390978 [TBL] [Abstract][Full Text] [Related]
14. Affinity of glucose analogs for alpha-glucan phosphorylases from rabbit muscle and potato tubers. Ariki M; Fukui T J Biochem; 1977 Apr; 81(4):1017-24. PubMed ID: 560367 [TBL] [Abstract][Full Text] [Related]
15. Complete amino acid sequence of rabbit muscle glycogen phosphorylase. Titani K; Koide A; Hermann J; Ericsson LH; Kumar S; Wade RD; Walsh KA; Neurath H; Fischer EH Proc Natl Acad Sci U S A; 1977 Nov; 74(11):4762-6. PubMed ID: 270711 [TBL] [Abstract][Full Text] [Related]
16. Alpha-glucan phosphorylase from sweet potato: isolation and properties of the partially degraded enzyme. Ariki M; Fukui T Biochim Biophys Acta; 1975 Mar; 386(1):301-8. PubMed ID: 236025 [TBL] [Abstract][Full Text] [Related]
17. Evolution of allosteric control in glycogen phosphorylase. Hudson JW; Golding GB; Crerar MM J Mol Biol; 1993 Dec; 234(3):700-21. PubMed ID: 8254668 [TBL] [Abstract][Full Text] [Related]
18. Determination of sites in rabbit muscle glycogen phosphorylase b modified by an adenosine 5'-monophosphate analog, N6-p-bromoacetaminobenzyladenosine-5'-phosphate. Kawashima S; Eguchi C; Imahori K J Biochem; 1978 Dec; 84(6):1507-11. PubMed ID: 739000 [TBL] [Abstract][Full Text] [Related]
19. Sequence of the amino-terminal 349 residues of rabbit muscle glycogen phosphorylase including the sites of covalent and allosteric control. Koide A; Titani K; Ericsson LH; Kumar S; Neurath H; Walsh KA Biochemistry; 1978 Dec; 17(26):5657-72. PubMed ID: 728424 [TBL] [Abstract][Full Text] [Related]
20. Amino acid sequences around the cysteine residues of rabbit muscle triose phosphate isomerase. Miller JC; Waley SG Biochem J; 1971 Apr; 122(2):209-18. PubMed ID: 5165707 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]